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ABSTRACT 

 

Macroeconomic modelling has been under intense scrutiny since the Financial Crisis of 2007-

2008, when serious shortcomings were exposed in the DSGE methodology. Although many of 

these criticisms were unfair or uninformed, they did highlight the need of considering 

alternative forms of macroeconomic modelling and enhancing established approaches in order 

to make them more useful for understanding a world in recession. In this sense, we argue that 

exploiting diversity in macroeconomic modelling can benefit the profession and yield more 

fruitful developments regarding the formulation of macroeconomic policy. One way of 

exploring diversity in macroeconomics is by investigating systematically both the DSGE and 

the Agent-Based models, revealing their relative strengths and limitations, and combining these 

two different approaches, so that we can explore what one can learn from the other and perhaps 

yield a hybrid model. This work takes the first step towards this ultimate achievement. We 

believe that an interdisciplinary approach may help not only the entire macroeconomic research 

agenda, but also benefit society as a whole, allowing the implementation of more effective 

policy measures and by increasing the ability of economists to model social heterogeneity in a 

complex-evolving world. 

 

KEY WORDS: Macroeconomic Policy. New Neoclassical Synthesis. New Keynesian Models. 

DSGE Models. Agent-Based Computational Economics. Agent-Based Models. Complexity 

Theory. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

 

RESUMO 

 

A modelagem macroeconômica tem estado sob intenso escrutínio desde a Crise Financeira de 

2007-2008, quando graves deficiências foram expostas na metodologia DSGE. Embora muitas 

dessas críticas tenham sido injustas ou desinformadas, elas enfatizaram a necessidade de 

considerar formas alternativas de modelagem macroeconômica e aprimorar abordagens 

estabelecidas, a fim de torná-las mais úteis para a compreensão de um mundo em recessão. 

Nesse sentido, argumentamos que explorar a diversidade na modelagem macroeconômica pode 

beneficiar a profissão e produzir resultados importantes em relação à formulação de políticas 

macroeconômicas. Uma maneira de explorar a diversidade na macroeconomia é investigar 

sistematicamente tanto os modelos DSGE quanto os modelos baseados em agentes, revelando 

suas forças e limitações relativas, e combinando essas duas abordagens diferentes, a fim de que 

possamos aprender uma com a outra e talvez produzir um modelo híbrido. Este trabalho dá o 

primeiro passo rumo a esse desafio. Acredita-se que uma abordagem interdisciplinar pode 

ajudar não só toda a agenda da pesquisa macroeconômica, mas também beneficiar a sociedade 

como um todo, permitindo a implementação de medidas políticas mais eficazes e aumentando 

a capacidade dos economistas em modelar a heterogeneidade social em um mundo complexo e 

em constante evolução. 

 

PALAVRAS-CHAVE: Política Macroeconômica, Síntese Novo-Neoclássica, Modelos 

Novos-Keynesianos, Modelos DSGE, Economia Computacional Baseada em Agentes, 

Modelos Agent-Based. 
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1. INTRODUCTION   

 

The clash between two competing business cycle theories – the Real Business 

Cycle (RBC) perspective and the New Keynesian paradigm – ended in the last decades 

with the development of a New Neoclassical Synthesis, grounded upon Dynamic 

Stochastic General Equilibrium (DSGE) models, which are at the heart of contemporary 

macroeconomic theory (Fagiolo and Roventini, 2012, 2017). Such models derive from 

the RBC models whose methodological influence is enormous so that it is worthwhile to 

make some remarks.  

Under this approach, the model is not the result of research, but a tool for inferring 

policy implications. Such models use microeconomic fundamentals as representative 

optimizing agents and perfect competition to respond to macroeconomic issues. 

Generally, the aggregation behavior is the sum of individual behavior, in the sense that 

the field of macroeconomics corresponds essentially to the problem of aggregation. In 

this view, macroeconomics may be thought of as taking individual utility or profit 

maximizing behavior and translating it to the aggregate level (Kirman, 2006).  

The process of such work can be broadly described as follows. Once the researcher 

has a quantitative query, he uses theories that have undergone rigorous empirical tests to 

build his model. Then he calibrates the model using real long-term data and uses that 

model to answer his initial query. Such a research procedure is called by its authors as a 

computational experiment and its authors would be creators of quantitative laboratories. 

The business cycles for the authors of RBC models originate from exogenous 

technological shocks and are propagated through the economy by agents smoothing 

consumption and optimizing between leisure and consumption over time. 

On the other hand, the new Keynesian (NK) models have rational expectations of 

all agents with price stickiness. They contemplate three equations: an equation of the 

Keynesian Philips curve, an equation of the IS curve - which assumes the permanent 

income hypothesis - and a monetary rule equation that incorporates the behavior of the 

central bank with inflation targets. 

In RBC models, flexible price equilibrium is also the first best. It is not possible 

to achieve higher welfare than at this equilibrium. However, in the NK-model, flexible 

price equilibrium is not the first best because exist imperfect competition in the goods 

market. Thus, welfare can be improved if this imperfection is removed. 
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Note that when the economy is disturbed by some shock, the cycles that emerge 

in the RBC models are equilibrium cycles. Moreover, they are efficient because they 

represent the first best outcomes and there is no role for the government to act with the 

goal of improving welfare. In the NK-model, price stickiness keeps the economy out of 

flexible price equilibrium so that welfare can be improved by some public policy 

intervention. Still, such cycles are cycles of equilibrium because they originate from 

forward-looking agents that always have a best-response decision. The mechanism that 

generates business cycles for the NK authors is the intertemporal substitution of labor, so 

that there is no involuntary unemployment. In addition, all agents have rational 

expectations, which lead, for instance, to inflation jumping from one level to another. 

One of the criticisms that can be made about DSGE models is the use of 

representative agent simplification. The Walrasian economy (Colander, 2006) uses as an 

element of the economic system the utility maximizing agent considering that its behavior 

prevails in the aggregate, assuming that the choice of representative agent will coincide 

with the aggregate choice of individuals in society. As stated by Lengnick (2013), this is 

considered by a great number of economists a way to provide proper microfoundation1. 

However, it seems clear that the representative agent's reaction to a policy change will 

not necessarily be the same as that of individuals in society and it also seems obvious that 

the preferences of the representative agent may be radically different from those of society 

as a whole. According to Kirman (1992), individual optimization does not imply 

collective rationality. As he argues, "there is no direct relation between individual and 

collective behavior" (Kirman, 1992, p. 118). 

Forni and Lipi (1997, 1999) show that the basic properties of linear dynamic 

microeconomic models are not maintained in the aggregate if the agents are 

heterogeneous. For example, a micro-level cointegration does not lead to macro 

cointegration, just as Granger's causality test may not happen at the micro level but occur 

at the macro level. In general, the representative agent hypothesis implies a one-to-one 

                                                           
1 According to the author, “in most macroeconomic models (…) microfoundation is either obtained by 

setting the aggregate equal to a ‘representative’ individual or by summing up over all individual decisions 

and confronting these sums on an aggregate level (the market). As a result, phenomena of the macro level 

are directly linked to individual behavior”. (Lengnick, 2013, p. 102). 
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correspondence between the micro and macro levels. This simplification prevents DSGE 

models from accounting for complex events. 

Some empirical evidences have shown that the non-linearity of the economy may 

lead to different consequences of macroeconomic policy depending on the state of the 

economy (e.g. Auerbach and Gorodnichenko, 2012) and the financial market (Mittnik 

and Semmler, 2013; Ferraresi et al., 2014). In DSGE models, the impacts of monetary 

and fiscal policies are time-invariant. According to Stiglitz (2015), DSGE models can 

work well in normal times, but cannot handle crises. On the same line, Krugman (2011) 

points out that, not only orthodox macroeconomists did not forecast the crisis, but they 

did not even admit the possibility of such event. Even worse, they did not provide any 

useful advices to policy makers to put back the economy on a steady growth path.  

As mentioned, DSGE models assume representative agents with rational 

expectations, which means that they do not systematically make mistakes and that they 

know exactly how the economic system works. According to Colander (2006), these 

models focus on the study of how globally rational agents with perfect information and 

foresight operate. It was felt that this way of treating the problem would provide important 

insights into situations where there was no perfect information. In other words, it means 

that these models try to study the coordination of an economy in which globally rational 

agents are optimizing in information-rich environments. The tricky aspect of this is that 

it is necessary to make various simplifying assumptions to make the problem tractable, 

which includes eliminating some aspects of the problem that could lead to multiple 

solutions. To achieve a unique solution, or at least a small number of solutions, the 

modeler must significantly limit the allowable interactions of heterogeneous agents. 

Generally, it has been done by focusing on models that include a single representative 

agent.  

 Such hypotheses are polemic to say the least. As Howitt (2012) states, individual 

rationality is not enough to make the system converge to the point of equilibrium. 

Moreover, as Caballero (2010) argues, it does not seem reasonable to assume that agents 

have all the informational set necessary to achieve equilibrium, particularly in periods of 

enormous structural change. Hendry and Minzon (2010) show that when structural breaks 

occur and have impacts on the economic trajectory, non-stationary elements may arise 

that prevent the economy from converging to equilibrium. Along the same line of 

thinking, Knight (1921) and Keynes (1936) stated that, in the presence of uncertainty, 
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agents follow heuristic and non-optimizing rules, differently from what the authors of the 

neo-classical paradigm assume. 

Given the need to respond to the above criticisms, the authors of the DSGE models 

sought to incorporate heterogeneous agents (Eggertsson and Krugman, 2012; Kumhof et 

al., 2015), bounded rationality (Branch and McGough, 2011; DeGrauwe, 2012; Anufriev, 

2007), financial sector (Christiano et al., 2011 and 2013), and to investigate the 

consequences of rare events in the DSGE models, such as in Curdia et al. (2014), 

Fernandez-Villaverde and Levintal (2016). As for heterogeneity, the models contemplate 

certain types of agents exogenously determined (i. e., rich and poor) without interaction 

between them. When bounded rationality is incorporated, agents, for example, may be 

rational or not, and the dynamics of the economy is affected by increases in the percentage 

of agents that adopt different expectations rules. Regarding the inclusion of the financial 

sector, such models do not deeply analyze the issue of the endogenous money or the role 

of the interaction networks among banks. Finally, economic cycles still continue to be 

triggered by exogenous factors (Fagiolo and Roventini, 2012, 2017). 

An increasing number of leading economists have claimed that the 2008 

“economic crisis is a crisis for economic theory” (Kirman, 2010, 2016; Colander, 2006; 

Krugman, 2011; Caballero, 2010; Stiglitz, 2011, 2015; LeBaron and Tesfatsion, 2008). 

Their view is that the basic assumptions of DSGE models (e.g. rational expectations, 

representative agents, perfect markets etc.) prevent the understanding of basic issues 

underlying the current economic crisis and, more generally, macroeconomic dynamics. 

This work embraces the idea that the economic system has its own properties, 

which emerge from the constituent social actions and interactions. It is characterized by 

being complex, because it is formed by heterogeneous elements that interconnect, with 

high multiplicity. The conception of economics as a system implies that economic 

functioning is not transparent to agents, that is, the latter are partially blind to macro 

events. In this sense, the economic system presents emergent properties, that is, 

characteristics that arise from the interaction between individuals that are not 

characteristic of the individual agents. 

Under this approach, Agent-Based Models (ABMs), also called Agent-Based 

Computational Economics (ACEs), may represent an important research tool for the 

economic system. ABMs are the computational study of dynamic systems composed of 

interacting agents that can be modeled with bounded rationality (but not only) and not 
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according to the optimizing behavior of the standard economy. The term "agent" can 

represent consumers, workers, households, companies, institutions, among others 

(Tesfatsion and Judd, 2006). 

An ABM may include agents with learning ability that develops over time. In this 

way, ABMs seem able to respond in a more realistic way which aggregate behavior 

prevails when agents with not-so-rational behaviors are assembled as the standard 

economy assumes. Nonetheless, ABMs may be able to reproduce a wide array of micro 

and macro empirical regularities, including stylized facts concerning financial dynamics 

and banking crises, for instance.  

The experiments of the ABMs seek to be based on more realistic assumptions 

regarding the behavior and interaction of the agents. In this sense, they seek to incorporate 

evidences from behavioral psychology (Kahneman and Tversky, 2000), and the super 

rationality of agents is replaced by bounded rationality and rational expectations by 

evolutionary-adaptive expectations. Analogously, network theory (e.g. Barabasi and 

Albert, 1999) may be included to investigate the micro and macroeconomic impact of 

interrelationships among various agents of the economic system.  

As in Dawid et al. (2013), Fagiolo and Roventini (2012, 2017) and others, we 

believe that ABMs can provide new kinds of insights, thereby showing the potential of 

agent-based modeling as an instrument complementing established modeling approaches. 

In this sense, we defend that new developments and extensions of DSGE models are 

certainly welcome, but we insist that they should consider economy as a complex 

evolving system (i.e., as an ecology populated by heterogeneous agents whose far-from-

equilibrium interactions continuously change the structure of the system). This is indeed 

the methodological core of ACE (Tesfatsion and Judd, 2006; LeBaron & Tesfatsion 

2008). 

However, ABMs are still in their infancy and some issues are still pending. The 

first one refers to the role played by micro and macro parameters. This is known as the 

problem of over-parametrization. It often appears because one typically inputs in the 

specification of agents’ behavioral rules and interaction patterns many ingredients in 

order to meet as much as possible the reality. But it can be a problem. The interpretation 

of different parametrizations can be very difficult. Another issue relies on which set of 

parameters should be used to respond to policy implications. It is important to notice that 

these issues are closely related to a regular critique that ABMs usually face, as pointed 
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out by Fagiolo and Roventini (2017, pp. 23-24), which is: “if an ABM contains many free 

parameters and it is able to reproduce a given set of stylized facts, how can one be sure 

that it represents the minimal mechanisms capable of reproducing the same set of stylized 

facts?”. Despite such a problem of over-parametrization is still not completely fixed, 

many developments have been made in the last years, as it will be shown in the third 

chapter. 

The second issue concerns the role played by initial conditions. If these really 

matter, then one is required to identify the "true" set of initial conditions in the empirical 

data in order to correctly define such conditions for his/her model. There is a possibility 

of infinite regress. If this is the case, then the researcher may need data stretching back a 

very long time, possibly before data started to be collected! But how far should the 

researcher go in his quest to find such initial conditions empirically? There are also 

progresses regarding this issue.2  

The second is closely related to the third issue, which regards the relation between 

simulated and real-world data. If, in principle, one could create as many theoretical 

observations as he likes, in practice one may only have a few (possibly only one!) of such 

empirical realizations.  

It is worth noticing that the three issues explicated above affect any stochastic, 

dynamic (economic) model, DSGE-based ones included. Indeed, they are subject of many 

debates among philosophers of science (see Fagiolo et al., 2007). 

The last issue is specific and concerns the comparability of different ABMs. 

Comparing DSGE models is easier because they are built using a well-stablished set of 

behavioral rules and their empirical validation is measured using common techniques (e. 

g. VAR models). In other words, we could say that there is a common guideline about 

how to do macroeconomics with DSGE models. On the other hand, “the lack of such a 

widespread agreement among the ACE community hinders the dialogue among different 

ABMs, reducing the comparability of their results, and possibly slowing down new 

developments” (Fagiolo and Roventini, 2017, p. 24). In this respect, there is still a lot to 

be done and it opens a great window of opportunity for future works (i.e., the development 

of common guidelines, dedicated languages and platforms, etc.). 

                                                           
2 Comparing Fagiolo and Roventini (2017) to the situation discussed in Fagiolo and Roventini (2012), it is 

clear that some progress has been made in this respect, especially in the efforts devoted to identifying 

ergodicity tests for ABMs). 
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As we can see, Agent-Based simulation models are a relatively new addition to 

the tool-box of macroeconomics, but it has been shown that new kinds of insights can be 

obtained that complement established modeling approaches. The understanding that a 

more productive research avenue should avoid, when it is possible, the strong theoretical 

requirements of standard models (e.g., equilibrium, rationality, representative agent, etc.) 

means considering the economy as a complex evolving system. Once relying upon more 

realistic hypotheses - since it does not depend on equilibrium assumptions or fictitious 

auctioneers and does therefore not rule out coordination failures, instability and crisis by 

definition - an ABM can be an important step towards a better understanding of 

macroeconomics and its aggregates interrelations.  

Moreover, many of ABMs are able to replicate the main stylized facts concerning 

business cycle fluctuations and to highlight the economic processes that generate these 

fluctuations, along with the attempt to match the micro-dynamics to reproduce the 

heterogeneity in firm investment behavior, firm distribution and income distributions. 

However, complexity comes with a cost as ABMs fail to keep the analytical 

tractability of DSGE models and lack well-established econometric approach to 

estimation, as we will see. On the contrary, DSGE modelling has a consistent theoretical 

formalization that allows researchers to assess the effect of different economic hypotheses 

and parametric choices (Gobbi, A. and Grazzini, J., 2017). So, despite their empirical and 

theoretical limitations, the importance of DSGE models is huge - and mainly its 

extensions introduced after the Financial Crisis – for the modern macroeconomics.  

Considering all the introductory discussion above, this work defends the idea that 

a more fruitful research avenue should consider a less insular modelling approach to 

macroeconomics. ABMs cannot afford to work in isolation. Neither can ABMs. The joint 

contribution between these two approaches can yield new developments and insights, 

especially when dealing with a world in recession. Moreover, we believe that exploiting 

diversity in macroeconomic modelling can benefit the profession and yield more fruitful 

developments regarding the formulation of macroeconomic policy.  

One way of exploring diversity in macroeconomics is by exploring systematically 

both the DSGE and the ABMs, revealing their relative strengths and limitations, and 

combining these two different approaches, so that we can explore what one can learn from 

the other and perhaps yield a hybrid model. This is a very promising line of research. 

However, DSGE and Agent-Based literature streams have grown independently and it is 
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very challenging to compare results and policy implications, as well as to combine them 

into a common model. Our ambitious here is lower.  

The effort of this work will be to propose a systematic investigation of the two – 

still competing – modeling approaches. For this end, in the first chapter it will be shown 

the main assumptions and ideas behind the DSGE methodology, as well as an analytical 

investigation on how these models are built. The second chapter introduces the main 

criticisms raised against the DSGE framework and how ABMs can contribute to a more 

realistic modelling approach. By exploring the main features and building structures of 

ABMs, chapter two also deals with the issue of estimation and validation. The last section 

concludes by summarizing and comparing the main ideas of both methodologies and 

proposes promising future researches. 
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2. UNDERSTANDING DSGE  

 

In this chapter, we intend to explain DSGE models in a very particular way, i. e., 

allowing readers to overcome some of the main difficulties regarding the comprehension 

of these types of models. Although DSGE modelling has become very popular in modern 

macroeconomics, it strikes us that in the current economic literature there is a lack of 

manual that reveals – step-by-step – how this line of research works. 

Generally, papers begin with a presentation of the agents’ objective functions and 

of the equations solutions of the maximization problem, whilst no resolution is shown. 

By doing that, it becomes difficult to properly identify the exact theoretical model and its 

application (Costa Jr., 2016). 

In short, DSGE combines rational expectations of all agents with price stickiness 

(Carlin and Soskice, 2015), as they are derived from the combination between RBC and 

NK-models. Thus, understanding DSGE requires us to comprehend its roots, that is, both 

the RBC and the NK modelling framework. 

Of course, this work does not encompass the whole DSGE methodology, but it 

presents in good details how these models are constructed, how they work, what are their 

underlying assumptions as well as their limitations and criticisms. Along with that, we try 

to point out some of the extensions and ramifications within this approach.  

To do so, in what follows, we start with a short explanation of some of the main 

assumptions and principles adopted by DSGE models, and proceed with both a theoretical 

and a modelling demonstration of RBC and NK approaches. Finally, we hope that all this 

effort allows readers to understand DSGE and to compare its methodology with Agent-

Based modelling. 

 

2.1   The Idea of Representative Agents 

 

Agents in an economy are heterogeneous, i. e., every consumer has different 

preferences for goods and services and every firm has different preferences regarding the 

use of technology in their production process. Nevertheless, considering these 

characteristics when modelling an economy creates a potential theoretical problem, how 

can one properly identify each economic agent’s individual choices? 
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It is a fact that any economic (and models in general) is a simplified description 

of a certain complex phenomenon. However, it seems obvious that it would be impossible 

to identify each individual agent’s exact choices. The way out of this issue by the standard 

economic approach was to group economic agents into larger categories3. By doing that, 

it is assumed that a large quantity of identical agents exists in the economy. 

This procedure within DSGE approach is called introducing a representative 

agent. It is indeed a significant simplification of a complex reality; however, defenders of 

this methodology advocate that macroeconomic modelling is a lot simpler by adopting 

such procedure, as it fulfills the purpose of macroeconomic studies, such as how 

household’s consumption responds to a rise in the interest rates. Moreover, they argue 

that the aim of DSGE modelling is to build relatively small theoretical problems. Thus, 

when aggregating the representative agents’ behavior, one can properly study how they 

interact, allowing for a detailed analysis of macroeconomic policy effects. 

 

2.2   The Idea of Agents’ Lifespan 

 

Agent’s lifespan means the temporal reference that agents use to make their 

decisions. For the purposes of DSGE models, it is assumed that agents have infinite time 

horizons. Again, this is a very simplified description of the reality, once firms, consumers 

and governments do not exist forever. 

The explanation for this assumption is quite simple. For example, when a 

government decides upon its budget, it does not expect a government collapse or any kind 

of event that can make it cease to exist. Firms act likewise, as they decide their budgets 

not considering that they will go bankrupt in the future. Regarding consumers, although 

it is assumed that each one has a finite lifespan, when considering the whole family 

structure, the “family representative agent” becomes infinite, as their members will 

periodically born and die. 

 

 

 

                                                           
3 For example, in a survey regarding consumers’ behavior, the modeller could create groups with similar 

consumption characteristics (e.g. low-, average-, and high income consumers). 
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2.3 Real Business Cycle (RBC) 

 

2.3.1 Introduction 

 

The RBC model was developed from the New Classical Macroeconomics4. The 

authors of the RBC methodology wanted to craft a model of business cycles based on the 

neo-classical growth model, so that they could be able to put together both a model of 

cycles and growth with intra- and inter-temporally optimizing agents.  

To do so, they took the Ramsey version of the Solow model5 and added shocks to 

technology and rational expectations. The agents’ behavior is incorporated by the so-

called “deep parameters”, which characterize both the production and utility functions 

(Carlin and Soskice, 2015).  An important feature of these macro models is that they are 

policy-invariant: 

 

A fundamental feature of this approach is that business cycles arise because of 

exogenous technology shocks, and that these shocks result in economic 

fluctuations because of the way agents respond to the new opportunities they 

face as a consequence of the shocks. For example, following a negative 

technology shock, which reduces real wages, the economy is in a business 

cycle trough and the reduction in aggregate hours worked in the economy is 

the outcome of employees choosing to supply less labor. Since fluctuations in 

employment are due to choices made by workers about their labor supply, the 

unemployment in a business cycle trough is voluntary. When cycles are 

equilibrium phenomena, as they are in the RBC framework, there is no 

presumption that policy intervention to ‘stabilize’ the economy would improve 

welfare (Carlin and Soskice, 2015, p. 585). 

 

 

The name “RBC” comes from the source of the fluctuations, which is on the 

supply side - i. e., it is deviations in the production function (technological shocks) what 

causes fluctuations in economic activity that are observed in the real world. Furthermore, 

what turns random shocks to technology into business cycle fluctuations in the RBC 

models is the way that households respond to changes in the real wage and the real interest 

rate. This is the major propagation mechanism in these models.  

                                                           
4 The early developers of this approach were Robert Lucas (1972), Thomas Sargent and Neil Wallace 

(1975), Finn Kyland and Edward Prescott (1977). 
5 The Ramsey version is when a constant savings ratio is replaced by optimizing households that choose 

their saving rate, i. e., when saving rate is endogenous (See Carlin and Soskice, 2015, chapter 4, for a 

detailed explanation). 
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Therefore, household consumption and labor supply are at the heart of this 

framework. In what follows, we shall further understand how the above features work in 

practice by modelling a basic structure compounded of two types of agents and two types 

of goods. 

 

2.3.2 Basic Structure of RBC Models 

 

For the purposes of this chapter, it will be considered a ‘basic’ model compounded 

of two types of agents: households and firms6. It will be assumed perfect competition and 

fully flexible prices in all markets. 

In section 2.1 we saw that, in the real world, although there is a very large number 

of households, they can be treated as if they were somehow identical. The same logic 

applies for the firms – i.e., they are treated as if they had the same technology. Again, this 

procedure is called introducing a representative agent, in this case, a representative firm. 

In order to show the basic ideas behind these types of models, this section will 

demonstrate: a) how households solve two problems of choice: 1) the intratemporal 

choice between consumption and leisure and 2) the intertemporal choice between 

consumption and saving; and b) how firms choose the inputs that will be used in their 

production process. As we shall note, basically in all cases, the marginal rate of 

substitution is compared to relative price. 

 

2.3.2.1 A model of two goods: consumption and leisure 

 

Our interest is to study how consumers choose what they consume in an economy 

where there are two large categories of consumer goods: ‘good 1’ and ‘good 2’. However, 

before doing this, we must define how these consumers earn their income.  

Let us assume that consumers obtain all their income from their labor. Thus, one 

can choose to work a certain number of hours – receiving a wage 𝑊 per hour – and to 

rest what remains of his/her available time. Presumably, work is a consumer ‘bad’ – i.e., 

agents do not wish to work a lot, because the more they do, the less time they have for 

leisure. 

                                                           
6 It is worth saying that a ‘complete’ model would consist of five agents: 1) households, 2) firms, 3) fiscal 

and monetary authorities, 4) the foreign sector and 5) financial institutions.  
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Adapting these characteristics to the standard consumer theory requires us, instead 

of considering work a ‘bad’, to consider leisure a ‘good’. So, we define leisure as the 

number of hours left after subtracting the time spent working from the total number of 

available hours in a certain period: 

 

 𝐿𝑒𝑖𝑠𝑢𝑟𝑒 +𝑊𝑜𝑟𝑘 = ℎ (𝑎𝑣𝑎𝑖𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒) (1) 

 

2.3.2.1.1 Indifference Curves (consumption-leisure) 

 

In our way to understand consumers’ choices, we also need to understand if they 

would be willing to give up leisure for consumption (or vice versa) and at what rate. For 

that, we need a definition of an indifference curve. 

Consider a certain consumption bundle (𝑥1, 𝑥2). Now, if we shade in all the 

consumption bundles that are weakly preferred to (𝑥1, 𝑥2), we will have a weakly 

preferred set. All the bundles on the boundary of this set form the indifference curve. In 

other words, the indifference curve shows the bundles for which the consumer is just 

indifferent to (𝑥1, 𝑥2). (For further details, see Varian, 2010, pp. 36-48). 

Note that, here, we are considering that the two factors that give utility to an 

individual are consumption (𝐶) and leisure (𝐻) – 𝑢(𝐶, 𝐻), both treated as goods. The 

utility function is assumed to have two properties: 

1) Strictly increasing (
𝜕𝑢

𝜕𝐶
 >  0 ;   

𝜕𝑢

𝜕𝐻
 > 0)  

2) Diminishing marginal returns  (
𝜕2𝑢

𝜕𝐶2
 < 0 ; 

𝜕2𝑢

𝜕𝐻2
 < 0) 

 

With these assumptions and the definition of an indifference curve, it is possible 

to plot an indifference curve map. The indifference curve map follows the standard 

properties of consumer theory, which is: each curve has a negative slope and is convex to 

the origin. Furthermore, the curves may not cross each other. 
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2.3.2.1.2 Marginal Rate of Substitution (MRS) 

 

With the above definitions and assumptions, we can measure how many units of 

a good an individual is willing to give up in exchange for another good. In our model, it 

means measuring how many units of leisure a consumer would accept to give away in 

exchange for more units of consumption. 

On a graph formed by two goods (e.g. 𝑋 and 𝑌), the MRS is the negative slope of 

an indifference curve at some point. That is:  

 

𝑀𝑅𝑆𝑋,𝑌 = −
𝜕𝑌

𝜕𝑋
|
𝑈=𝑈1

 

  

𝑀𝑅𝑆𝑋,𝑌 = −
𝑀𝑈𝑋
𝑀𝑈𝑌

|
𝑈=𝑈𝑖

 

 

Where 𝑀𝑈𝑋   and 𝑀𝑈𝑌  represent the marginal utilities in relation to goods 𝑋 and 

𝑌, respectively, and |𝑈 = 𝑈𝑖 notation indicates that the slope is calculated along the 

indifference curve 𝑈𝑖. 

 

2.3.2.1.3 Budget Constraints 

 

Studying a consumer’s optimal choice requires more than the indifference map. It 

is deductible that each individual has a total amount of income he/she can spend, 

depending on how much he/she chooses to work. 

Let us suppose that an individual has 60 hours per week available for work and 

leisure. Moreover, assume that this individual can work how many hours he/she wants, 

receiving an hourly wage 𝑊. So, the total weekly income would be: 

 

 𝑌 = 𝐿.𝑊 (2) 

 

From (1), we have therefore 𝒉 =  𝟔𝟎, i.e., 60 hours available per week. So, 𝐿 =

60 − 𝐻. Thus, income can be written as a function of leisure: 
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 𝑌 = (60 − 𝐻).𝑊 (3) 

 

Here, another assumption is taken. We will consider that consumers spend all the 

income they receive, not saving anything. Each consumer good (𝑐) is available on the 

market for the price (𝑃). Therefore, an individual’s consumption in each period is: 

 

 𝑃. 𝑐 = 𝑌 (4) 

 

Combining (3) and (4), we arrive at the following budget constraint: 

 

 𝑃. 𝑐 = (60 − 𝐻).𝑊 (5) 

 

In expression (5), an individual takes prices of consumer goods (𝑃) and hourly 

wages (𝑊) as given. He/She can only choose the level of consumption and the amount 

of leisure. 

Rearranging (5), we have: 

 

 𝑃. 𝑐 = (60.𝑊) − (𝐻.𝑊) → 𝑃. 𝑐⏟
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟
𝐺𝑜𝑜𝑑𝑠

+ 𝑊.𝐻⏟
𝐿𝑒𝑖𝑠𝑢𝑟𝑒

⏞          

𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓
𝐼𝑛𝑐𝑜𝑚𝑒

= 60.𝑊⏟  
𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒

𝐼𝑛𝑐𝑜𝑚𝑒

 (6) 

 

 

From (6), we can see that the total disposable income (60.𝑊) is used to acquire 

consumer goods (𝑃. 𝑐) and leisure (𝑊.𝐻). Although leisure cannot be directly bought or 

sold on the market, we can understand wages as the leisure cost of opportunity. Each hour 

spent on leisure is an hour that could have been spent working. Thus, if we explicitly 

consider the opportunity costs, wages are thus the price of leisure. 

 

2.3.2.2 Obtaining Individuals’ Optimal Choices 

 

Our effort to explain individual’s preferences and budget constraints was 

intentional. It is the interaction between them that will give us an individual’s optimal 

choice. Formally speaking, an individual faces the following optimization problem: 
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max
𝑐,𝐿

𝑢(𝑐, 𝐿) 

Subject to,  

 𝑃. 𝑐 = 𝑊. 𝐿 (7) 

   

We will use the Lagrangian method to solve this type of problem. The Lagrangian 

is: 

 

 ℒ =  𝑢(𝑐, 𝐿) − 𝜆(𝑃. 𝑐 −𝑊. 𝐿) (8) 

 

The first-order conditions for 𝑐 and 𝐿 are: 

 

 
𝜕ℒ

𝜕𝑐
=
𝜕𝑢

𝜕𝑐
− 𝜆𝑃 = 0 (9) 

 
𝜕ℒ

𝜕𝐿
=
𝜕𝑢

𝜕𝐿
+ 𝜆𝑊 = 0 (10) 

 

Combining (9) and (10), we have: 

 

 

𝜕𝜇
𝜕𝐿
𝜕𝜇
𝜕𝑐

= −
𝑊

𝑃
 

(11) 

                  

Note that the left-hand side of the last expression represents the leisure-

consumption’s marginal rate of substitution, whilst the right-hand side is the leisure-

consumption relative price. 

In summary, the problem of the household is to maximize utility given a fixed 

amount of income. For this accomplishment, an individual will buy the amount of goods 

that depletes his/her total income equating to the physical rate of tradeoff between any 

two goods (MRS) and the rate at which a good can be exchanged for another on the 

market-relative price. The optimal consumption bundle is the point that represents the 

pair of goods that is on the highest indifference curve and is within the individual’s budget 

constraint. 
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2.3.2.3 Dynamic Structure of Consumption-Savings 

 

Whenever an individual makes a choice between consumption and leisure in the 

current period, he/she often recognizes that a similar choice will be made sometime later. 

To formalize this, economists use a utility function and almost always simplify 

intertemporal problems assuming that preferences are additively separable: 

 

 𝑢(𝑐1, 𝑐2, 𝑐3,…) = 𝑢(𝑐1) + 𝛽𝑢(𝑐2) + 𝛽
2𝑢(𝑐3) + ⋯  (12) 

with 𝛽 > 1. 

 

The 𝛽 parameter is called an intertemporal discount factor. It is less than one as it 

represents that households are more concerned with present than future consumption7.  

For the sake of clarity, we will ignore data regarding leisure, as it follows the same 

logic, and assume that individuals live only in two periods: the present (period 1) and the 

future (period 2). As Costa Jr. (2016, p. 22) argues: “this division into two periods is 

enough to illustrate the basic principles of macroeconomic events that occur 

intertemporally in a structure with an infinite time horizon”. 

In what follows, we assume all the usual properties of the utility function. In this 

simplified RBC model, individuals receive income twice during their lives – once in 

period 1 and once in period 2. They start off in period 1 with a certain amount of wealth 

(𝐴0) and choose how much they want to consume, paying a price of 𝑃1, as well as how 

much wealth they will carry forward to period 2 (𝐴1). 𝐴0 and 𝐴1 may assume negative 

values, which indicate that an individual would be a borrower in these periods. 

The budget constraint in period 1 can be written as: 

 

     𝑃1 . 𝑐1 + 𝐴1 = 𝑅. 𝐴0 + 𝑌1  , (13) 

 

where R is the gross nominal interest rate8 that represents the returns on each monetary 

unit held as a financial asset from a period to another. 

                                                           
7 𝛽 =

1

1+𝜃
 ,where 𝜃 is the subjective intertemporal preference rate. This parameter indicates the value of 

future utility in relation to present utility. The greater the value of 𝛽, the more patient the household is with 

regard to consumption (Costa Jr., 2016, p. 22). 
8 A gross rate is defined as 𝑅 = 1 + 𝑟, where 𝑟 is the net return for the period. 
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An individual’s budget constraint in period 2 follows the same logic, but the final 

wealth must be zero, as individuals live only for two periods. 

Before continuing, let us define periods’ savings as the difference between total 

income and the total spent within a given period, that is: 

 

    𝑆1 = (𝑅 − 1). 𝐴0 + 𝑌1 − 𝑃1. 𝑐1 (14) 

 

Rearranging (14): 

 

 𝐴1 − 𝐴0 = (𝑅 − 1). 𝐴0 + 𝑌1 − 𝑃1. 𝑐1 (15) 

   

Note that: 𝑆1 = 𝐴1 − 𝐴0, i. e., the amount of individuals’ savings in period 1 is 

equal to the variation in their wealth within the period. Similarly: 𝑆2 = 𝐴2 − 𝐴1.9 

By combining the budget constraints of period 1 and 2, we arrive at an individual’s 

intertemporal budget constraint.  

Solving the budget constraint for 𝐴1 on period 1, we have: 

 

 𝐴1 = 𝑅. 𝐴0 + 𝑌1 − 𝑃1. 𝑐1 (16) 

 

Substituting (16) in period 2’s budget constraint: 

 

 𝑃2. 𝑐2 = 𝑅. [𝑅. 𝐴0 + 𝑌1 − 𝑃1. 𝑐1] + 𝑌2 (17) 

 

Dividing both sides by R: 

 

 𝑃1. 𝑐1 +
𝑃2. 𝑐2
𝑅

= 𝑌1 +
𝑌2
𝑅
+ 𝑅. 𝐴0 (18) 

 

The right-hand side of (18), which considers the initial wealth and the individual’s 

lifetime income, represents the discounted intertemporal resource. The left-hand side 

                                                           
9 It is worth saying that it is an approximation to general economic behavior to assume that individuals are 

rational during their lifespans, saving and/or borrowing appropriately during their entire lives. 
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represents the discounted intertemporal consumption, which considers the consumption 

in all periods. 

Assuming that initial wealth is zero (𝐴0 = 0) and solving (18) for 𝑐2, we have: 

 

  𝑐2 = [(
𝑅

𝑃2
) . 𝑌1 + 

𝑌2
𝑃2
] − [

𝑃1. 𝑅

𝑃2
] . 𝑐1 (19) 

 

2.3.2.4 Optimal Intertemporal Choice 10 

 

In this consumption-leisure basic model, we are assuming that an individual lives 

only for two periods. Thus, preferences can be reduced to: 

 

 𝑢(𝑐1, 𝑐2) = 𝑢(𝑐1) + 𝛽. 𝑢(𝑐2) (20) 

 

Note that we can assume 𝐴2 = 0, since keeping assets in the form of savings in 

period 2 would not be logical/optimal. Thus, an individual’s budget constraints in both 

periods are: 

 

 𝑃1. 𝑐1 + 𝐴1 = 𝑅. 𝐴𝑜 + 𝑌1 (21) 

 𝑃2. 𝑐2 = 𝑅. 𝐴1 + 𝑌2 (22) 

   

Any individual faces the following problem: 

 

 max
𝑐1.𝑐2,𝐴1

𝜇(𝑐1) + 𝛽. 𝜇(𝑐2)  

subject to:  

 𝑃1. 𝑐1 + 𝐴1 = 𝑅. 𝐴0 + 𝑌1  

 𝑃2. 𝑐2 = 𝑅. 𝐴1 + 𝑌2 (23) 

 

 

                                                           
10 An individual’s optimal intertemporal choice is an interaction between his/her indifference curve map 

and intertemporal budget constraints (Costa Jr., 2016). 
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That is, the individual has to choose the levels of consumption for both periods 

and the level of wealth that maximizes his/her utility function, which is restricted by the 

budget constraints in both periods. The values of 𝑃 and 𝑅 are given. 

The Lagrangian for this problem is: 

 

 
ℒ =  𝑢(𝑐1) + 𝛽. 𝑢(𝑐2) − 𝜆1[𝑃1.𝑐1 + 𝐴1 − 𝑅. 𝐴0 − 𝑌1]

− 𝜆2[𝑃2. 𝑐2 − 𝑅. 𝐴1 − 𝑌2] 
(24) 

 

The first-order conditions for 𝑐1, 𝑐2 and 𝐴1 are: 

 

 
𝜕ℒ

𝜕𝑐1
=
𝜕𝑢

𝜕𝑐1
− 𝜆1. 𝑃1 = 0 (25) 

 
𝜕ℒ

𝜕𝑐2
= 𝛽

𝜕𝑢

𝜕𝑐2
− 𝜆2. 𝑃2 = 0 (26) 

 
𝜕ℒ

𝜕𝐴1
= −𝜆1 + 𝜆2. 𝑅 = 0 (27) 

 

Rewriting (25), we have: 𝜆1 =
𝜕𝑢

𝜕𝑐1
⁄

𝑃1
 

Rewriting (26), we have: 𝜆2 = 𝛽
𝜕𝑢

𝜕𝑐2
⁄

𝑃2
 

Now, substituting these results in (27) and defining 𝜋2 =
𝑃2

𝑃1
, we arrive at the 

following expression: 

 −

𝜕𝜇
𝜕𝑐1
⁄

𝛽𝜕𝜇
𝜕𝑐2
⁄

= −
𝑅

𝜋2
 (28) 

 

Equation (28) is called the Euler Equation. Note that it relates the marginal utility 

of consumption for both periods with the relative price of intertemporal consumption11. 

                                                           
11 It is worth remembering that the indifference curve’s slope measures the extra consumption that would 

be necessary in the following period to offset the loss of a unit of consumption in the current period. 

Contrariwise, the budget constraint’s slope determines the premium 𝑅 for saving more. The slopes of the 

indifference curves and the budget constraint are equal. Besides, higher the values for 𝛽 (i.e., patient 

individuals), lower the slopes of the indifference curves (Barro, 1997; Costa Jr., 2016). For a graphical 

example, see Costa Jr (2016, pp. 28-29). 
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Following the standard approach, the next step is to model how firms choose 

inputs and production levels with the objective of maximizing economic profit. Briefly 

speaking, firms wish to obtain the largest possible difference between revenue and total 

costs. For the sake of briefness, we will omit this formalization12. 

For our purposes, what we need to know is that firms will choose input levels so 

that the marginal product of these inputs equals their real marginal costs. As Costa Jr. 

(2016, p. 32) states: 

 

Agents, when deciding upon their choices, use marginal rates of substitution 

between goods and their relative prices. First, households must face the 

consumption-leisure tradeoff analyzing the relative price between these goods 

(real wages). When the choice is intertemporal, the tradeoff is between 

consumption today and future consumption, and the relative price is the 

nominal interest rate. Firms must make the same type of decision when 

deciding the combination of units of labor and capital to be used, analyzing the 

relative prices of these inputs (
𝑊

𝑅
). 

 

 

2.3.3  The Model13 

 

Let us now present the structural formalization of the RBC model proposed. To 

do so, we will start with the presentation of the agents, showing the equilibrium 

conditions. Then, we will find the steady state and log-linearize the model’s equilibrium 

equations. 

The RBC model proposed requires some assumptions. First, the economy is 

closed, with no government or financial sector. Second, the economy does not have a 

currency. Third, adjustment costs do not exist. As we will see, in the basic New Keynesian 

model (NK-model) presented in section 2.4, the first two assumptions will continue valid. 

 

2.3.3.1 Households 

 

We assume that the economy is composed by a unique set of households indexed 

by 𝑗 ∈ [0,1]. Their problem is to maximize a particular intertemporal welfare function, 

                                                           
12 The formalization is well demonstrated in Costa Jr. (2016, pp. 29-32). 
13 We are considering the model presented in Costa Jr (2016, chapter two). However, it is a very simplistic 

model. It is worth noting that RBC models have become much more sophisticated in recent years. For a 

different modelling approach, see the baseline RBC model proposed in Romer (2012, pp. 195-233). 
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that is, a utility function additively separable into consumption (𝐶) and labor (𝐿). Thus, 

further assumptions must be considered. 

First, consumption is intertemporally additively separable, in the sense that there 

is no habit formation14. Second, population growth is not considered. With these 

assumptions considered, the representative household faces the following problem: 

 

 
max

𝐶𝑗,𝑡1.𝐿𝑗,𝑡,𝐾𝑗,𝑡+1
𝐸𝑡∑𝛽𝑡

∞

𝑡=0

(
𝐶𝑗,𝑡
1−𝜎

1 − 𝜎
−
𝐿𝑗,𝑡
1+𝜑

1 + 𝜑
) 

 

(29) 

Subject to: 

 𝑃𝑡(𝐶𝑗,𝑡 + 𝐼𝑗,𝑡) = 𝑊𝑡. 𝐿𝑗,𝑡 + 𝑅𝑡. 𝐾𝑗,𝑡 + 𝜋𝑡 (30) 

 

  

In (29), 𝐸𝑡 is the expectations operator, 𝛽 is the intertemporal discount factor, 𝐶 

is the consumption of goods, 𝐿 is the number of hours worked, 𝜎 is the relative risk 

aversion coefficient15, and 𝜑 is the marginal disutility of labor supply. 

The utility function must have the same characteristics we mentioned before, i. e.: 

𝑈𝐶 > 0; 𝑈𝐿 < 0;𝑈𝐶𝐶 < 0;𝑈𝐿𝐿 < 0 16. It means that consumption has a positive effect on 

the utility of household, but labor does not. Also, the utility function is concave, which 

represents the fact that, as consumption increases, so does utility, but at lowers rates. 

In (30), P is the general price level, I is the level of investment, W is the level of 

wages, K is the capital stock, R is the return on capital, and 𝜋 is the firms’ profits 

(dividends).  

Households maximize their welfare function, which is subject to their 

intertemporal budget constraints. It is assumed that households are the owners of all the 

                                                           
14 Empirical evidences show that households do not change their pattern of consumption right after an 

unexpected shock alters their income, because they use their savings to mitigate their loss. In the economic 

literature, this friction is known as habit formation or consumption habits. As we will see in section 2.5, 

some NK-DSGE models address this empirical evidence that the behavior of the households follows a 

regular pattern. So, they consider an intertemporally non-separable utility function. 
15 Note that we are assuming a constant relative risk aversion (CRRA) utility function, since it is the most 

common when representing household choices. However, there are other functions used in the literature. 

See Hansen (1985) and Gertler and Karadi (2011) for examples of a logarithmic utility function and a 

combination of log and CRRA, respectively. 
16 𝑈𝐶  and 𝑈𝐿are the first-order derivatives of the utility function in relation to consumption and labor, 

respectively. 𝑈𝐶𝐶  and 𝑈𝐿𝐿 are the second order derivatives. 
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economy’s factor of production – capital and labor. When providing labor and capital to 

firms, households receive wages and return on capital. They also own the firms, so they 

receive dividends. 

Finally, the following expression shows capital accumulation over time: 

 

 𝐾𝑗,𝑡+1 = (1 − 𝛿)𝐾𝑗,𝑡 + 𝐼𝑗,𝑡 , (31) 

where 𝛿 is the depreciation rate of physical capital. 

 

The Lagrangian for this maximization problem is: 

 

 

ℒ = 𝐸𝑡∑𝛽𝑡 {[
𝐶𝑗,𝑡
1−𝜎

1 − 𝜎
−
𝐿𝑗,𝑡
1+𝜑

1 + 𝜑
] − 𝜆𝑗,𝑡[𝑃𝑡. 𝐶𝑗,𝑡 + 𝑃𝑡 . 𝐾𝑗,𝑡+1 − 𝑃𝑡 . (1 − 𝛿)𝐾𝑗,𝑡

∞

𝑡=0

−𝑊𝑡. 𝐿𝑗,𝑡 − 𝑅𝑡. 𝐾𝑗,𝑡 − 𝜋𝑡]} 
(32) 

 

         

The first-order conditions for 𝐶, 𝐿 and 𝐾 are: 

 
𝜕ℒ

𝜕𝐶𝑗,𝑡
= 𝐶𝑗,𝑡

−𝜎 − 𝜆𝑗,𝑡. 𝑃𝑡 = 0 (33) 

 
𝜕ℒ

𝜕𝐿𝑗,𝑡
= −𝐿𝑗,𝑡

−𝜑
+ 𝜆𝑗,𝑡.𝑊𝑡 = 0 (34) 

 
𝜕ℒ

𝜕𝐾𝑗,𝑡+1
= −𝜆𝑗,𝑡. 𝑃𝑡 + 𝛽. 𝐸𝑡. 𝜆𝑗,𝑡+1[(1 − 𝛿)𝐸𝑡. 𝑃𝑡+1 + 𝐸𝑡 . 𝑅𝑡+1] = 0 (35) 

 

 

Solving for 𝜆𝑡, we arrive at the household’s labor supply equation: 

 

 𝐶𝑗,𝑡
𝜎 . 𝐿𝑗,𝑡

𝜑
=
𝑊𝑡
𝑃𝑡

 (36) 
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Multiplying both sides by -1: 

 

 
−𝐶𝑗,𝑡

𝜎 . 𝐿𝑗,𝑡
𝜑⏞      

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛−𝑙𝑒𝑖𝑠𝑢𝑟𝑒
𝑀𝑅𝑆

= −
𝑊𝑡
𝑃𝑡

⏞

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛−𝑙𝑒𝑖𝑠𝑢𝑟𝑒
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑐𝑒

 
(37) 

 

Expression (37) shows that the consumption-leisure relative price (i.e. real wage) 

is equal to the leisure-consumption marginal rate of substitution17. It means that a rise in 

consumption will be only possible with a rise in the number of labor hours (less leisure), 

ceteris paribus. On the other hand, with higher wages, it is possible to increase 

consumption without giving up leisure. 

From (33), we arrive at: 

𝜆𝑗,𝑡 =
𝐶𝑗,𝑡
−𝜎

𝑃𝑡
 

So, 

𝜆𝑗,𝑡+1 =
𝐶𝑗,𝑡+1
−𝜎

𝑃𝑡+1
 

 

Substituting these results in equation (35), we have: 

 

−𝐶𝑗,𝑡
−𝜎 + 𝛽. 𝐸𝑡 {(

𝐶𝑗,𝑡+1
−𝜎

𝑃𝑡+1
) [(1 − 𝛿)𝑃𝑡+1 + 𝑅𝑡+1]} = 0 

 
(
𝐸𝑡 . 𝐶𝑗,𝑡+1

𝐶𝑗,𝑡
)

𝜎

= 𝛽 [(1 − 𝛿) + 𝐸𝑡. (
𝑅𝑡+1
𝑃𝑡+1

)] 

 

(38) 

Equation (38) is the Euler equation, which determines the household’s savings 

decision18. It means that when deciding their level of savings, households compare the 

utility rendered when consuming an additional amount today with the utility that could 

be rendered by consuming more in the future. So, if interest rate expectations rise, present 

consumption (at 𝑡) will be more expensive, so future consumption (at 𝑡 + 1) will rise, 

ceteris paribus. 

                                                           
17 Note that it follows the same logic as in expression (11). 
18 In this model, savings is the acquisition of investment goals. 
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The household’s problem, in Costa Jr’s words: 

 

(…) boils down to two choices. The first is an intratemporal choice between 

acquiring consumption and leisure goods. The other is an intertemporal choice, 

in which the household must choose between present and future consumption” 

(Costa Jr., 2016, p. 37). 

 

2.3.3.2 Firms 

 

Representative firms are agents that produce goods and services that can be 

consumed or saved by households19. The first assumption we need to consider is that there 

is a continuum of firms indexed by 𝑗 that maximize profits in a perfect competition market 

structure. This means that their profits will always be zero(𝜋𝑡 = 0; ∀𝑡). 

For our purposes, we are assuming a Cobb-Douglas production function: 

 

 𝑌𝑗,𝑡 = 𝐴𝑡. 𝐾𝑗,𝑡
𝛼 . 𝐿𝑗,𝑡

1−𝛼 (39) 

 

𝐴𝑡 represents productivity; 𝑌𝑡 represents the product and 𝛼 is the elasticity of the 

level of production with respect to capital. 𝛼 can also be thought of as the participation 

of capital in income. Thus, (1 − 𝛼) would be the labor level of participation. 

The firm faces the problem of maximizing the profit function, choosing the ideal 

amounts of both inputs (capital and labor). That is: 

 

 max
𝐿𝑗,𝑡,𝐾𝑗,𝑡

𝜋𝑡 = 𝐴𝑡. 𝐾𝑗,𝑡
𝛼 . 𝐿𝑗,𝑡

1−𝛼. 𝑃𝑗,𝑡 −𝑊𝑡. 𝐿𝑗,𝑡 − 𝑅𝑡. 𝐾𝑗,𝑡 (40) 

 

The first-order conditions for 𝐾and 𝐿 are: 

 

 
𝜕𝜋𝑗,𝑡

 𝜕𝐾𝑗,𝑡
= 𝛼𝐴𝑡 . 𝐾𝑗,𝑡

𝛼−1. 𝐿𝑗,𝑡
1−𝛼. 𝑃𝑗,𝑡 − 𝑅𝑡 = 0 (41) 

 
𝜕𝜋𝑗,𝑡

𝜕𝐿𝑗,𝑡
= (1 − 𝛼)𝐴𝑡 . 𝐾𝑗,𝑡

𝛼 . 𝐿𝑗,𝑡
−𝛼. 𝑃𝑗,𝑡 −𝑊𝑡 = 0 (42) 

 

                                                           
19 When households choose to save, they will eventually transform goods/services into capital. 
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Rearranging (41), we arrive at: 

 

 

𝑅𝑡
𝑃𝑗,𝑡

=  𝛼.
𝑌𝑗,𝑡

𝐾𝑗,𝑡
 

 

(43) 

Expression (43) represents the demand for capital. Note that (
𝑅𝑡

𝑃𝑗,𝑡
) 

is the real marginal cost of capital and (𝛼.
𝑌𝑗,𝑡

𝐾𝑗,𝑡
) is the marginal product of capital. 

Now, rearranging (42): 

 

 
𝑊𝑡
𝑃𝑗,𝑡

= (1 − 𝛼).
𝑌𝑗,𝑡

𝐿𝑗,𝑡
 (44) 

 

Expression (44) represents the demand for labor. Again, note that (
𝑊𝑡

𝑃𝑗,𝑡
) is the real 

marginal cost of labor and (1 − 𝛼).
𝑌𝑗,𝑡

𝐿𝑗,𝑡
  is the marginal product of labor. 

We will assume that productivity shocks follow a first-order autoregressive 

process: 

 

 log 𝐴𝑡 = (1 − 𝜌𝐴). log 𝐴𝑆𝑆 + 𝜌𝐴. log 𝐴𝑡−1 + 𝜖𝑡 , (45) 

 

where 𝜌𝐴 is the autoregressive parameter of productivity, with −1 < 𝜌𝐴 < 1 to ensure 

the stationary state of the process; 𝐴𝑆𝑆 is the value of productivity at the steady state and 

𝜖𝑡~𝑁(0, 𝜎𝐴), that is, 𝜖𝑡 is a white-noise disturbance – a series of mean-zero shocks that 

are uncorrelated with one another. 

Following the RBC approach, prices levels must be equal to marginal costs. To 

obtain marginal cost, we must first combine equations (43) and (44): 

 

 
−
𝑊𝑡
𝑅𝑡
= 
(1 − 𝛼)𝐾𝑗,𝑡

𝛼𝐿𝑗,𝑡
 

 

(46) 

The first term of expression (46) represents the economic rate of substitution, 

which measures – maintaining the same cost – the rate at which labor can be replaced by 
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capital. The second term represents the marginal rate of technical substitution, which 

measures – while maintaining a constant level of production – the rate at which labor can 

be replaced by capital. 

Rearranging (46): 

 

 
𝐿𝑗,𝑡 = (

1 − 𝛼

𝛼
) .
𝑅𝑡
𝑊𝑡
. 𝐾𝑗,𝑡 

 

(47) 

Substituting (47) in the production function (39), we get: 

 

 
𝑌𝑗,𝑡 = 𝐴𝑡 . 𝐾𝑗,𝑡

𝛼 [(
1 − 𝛼

𝛼
) .
𝑅𝑡
𝑊𝑡
. 𝐾𝑗,𝑡]

1−𝛼

 

 

(48) 

Rearranging (48): 

 
𝐾𝑗,𝑡 =

𝑌𝑗,𝑡

𝐴𝑡
[(

𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
1−𝛼

 

 

(49) 

Now, substituting (49) in (47): 

 

𝐿𝑗,𝑡 =
𝑌𝑗,𝑡

𝐴𝑡
(
1 − 𝛼

𝛼
)
𝑅𝑡
𝑊𝑡
[(

𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
1−𝛼

 

(
1 − 𝛼

𝛼
)
𝑅𝑡
𝑊𝑡

= [(
𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
−1

 

 
𝐿𝑗,𝑡 =

𝐴𝑡
𝑌𝑗,𝑡
[(

𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
−𝛼

 

 

(50) 

Firms’ total cost is represented by: 

 

 
𝑇𝐶𝑗,𝑡 = 𝑊𝑡. 𝐿𝑗,𝑡 + 𝑅𝑡. 𝐾𝑗,𝑡 

 
(51) 

Replacing (49) and (50) into (51): 
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 𝑇𝐶𝑗,𝑡 = 𝑊𝑡.
𝑌𝑗,𝑡

𝐴𝑡
[(

𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
−𝛼

+ 𝑅𝑡.
𝑌𝑗,𝑡

𝐴𝑡
[(

𝛼

1 − 𝛼
) .
𝑊𝑡
𝑅𝑡
]
1−𝛼

 (52) 

 

With a little algebraic handling, we arrive at: 

 

 
𝑇𝐶𝑗,𝑡 =

𝑌𝑗,𝑡

𝐴𝑡
. (
𝑊𝑡
1 − 𝛼

)
1−𝛼

. (
𝑅𝑡
𝛼
)
𝛼

 

 

(53) 

Knowing that the marginal cost (𝑀𝐶) is the first derivative of the total cost, we 

have: 

 

 
𝑀𝐶𝑗,𝑡 =

1

𝐴𝑡
(
𝑊𝑡
1 − 𝛼

)
1−𝛼

. (
𝑅𝑡
𝛼
)
𝛼

 

 

(54) 

Note that the marginal cost depends only on the productivity and on the prices of 

the factors of production. So, it will be the same for every firm(𝑀𝐶𝑗,𝑡 = 𝑀𝐶𝑡). 

Knowing that 𝑃𝑡 = 𝑀𝐶𝑡, we can arrive at the general price level of the economy: 

 

 

𝑃𝑡 =
1

𝐴𝑡
(
𝑊𝑡
1 − 𝛼

)
1−𝛼

(
𝑅𝑡
𝛼
)
𝛼

 

 

 

(55) 

2.3.3.3 The Equilibrium Conditions 

 

Now that we have described agents’ behavior, we need to study the interaction 

between them in order to find macroeconomic equilibrium. In this model, households 

decide how much to consume (𝐶), how much to invest (𝐼) and how much labor to 

supply (𝐿). Their goal is to maximize utility, taking prices as given. Firms decide how 

much to produce (𝑌) with the available technology. They can choose the levels of capital 

and labor, taking prices as given. 

The equilibrium of the system consists of three blocks: 

 A price system: 𝑊𝑡, 𝑅𝑡 and 𝑃𝑡; 

 An endowment of values for goods and inputs: 𝑌𝑡, 𝐶𝑡, 𝐼𝑡, 𝐿𝑡 𝑎𝑛𝑑 𝐾𝑡; 
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 A production-possibility frontier that follows the equilibrium of the good market 

(i.e., aggregate supply = aggregate demand): 𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 

 

Finding a sequence of endogenous variables such that the equilibrium conditions 

are satisfied is what makes a competitive equilibrium for the RBC models. 

 

2.3.3.4 Steady State 

 

The next step after defining the equilibrium is to define the steady state values20. 

Some endogenous variables have their steady state values exogenously determined, as it 

occurs with productivity – the source of standard RBC models’ shocks. At the steady 

state, 𝐸(𝜀𝑡) = 0. Note that, in equation (45), we do not know the value of 𝐴𝑆𝑆, so the 

literature almost always assume 𝐴𝑆𝑆 = 1, and, therefore, log 𝐴𝑆𝑆 = 0. 

Removing variables’ time indicators, the structural model is shown at Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
20 Definition: an endogenous variable is at the steady state in each 𝑡, if 𝐸𝑡𝑥𝑡+1 = 𝑥𝑡 = 𝑥𝑡−1 = 𝑥𝑆𝑆 (Costa 

Jr., 2016). 
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Table 1 - Structure of the Model 

Equation Definition 

𝐶𝑡
𝜎 . 𝐿𝑡

𝜑
=
𝑊𝑡
𝑃𝑡

 
Labor Supply 

(
𝐸𝑡. 𝐶𝑗,𝑡+1

𝐶𝑗,𝑡
)

𝜎

= 𝛽 [(1 − 𝛿) + 𝐸𝑡 . (
𝑅𝑡+1
𝑃𝑡+1

)] 
Euler Equation 

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝐼𝑡 Capital’s Law of motion 

𝑌𝑡 = 𝐴𝑡 . 𝐾𝑡
𝛼. 𝐿𝑡

1−𝛼 Production Function 

𝐾𝑡 = 𝛼.
𝑌𝑡
𝑅𝑡
𝑃𝑡

 
Demand for Capital 

𝐿𝑡 = (1 − 𝛼).
𝑌𝑡
𝑊𝑡
𝑃𝑡

 
Demand for Labor 

𝑃𝑡 =
1

𝐴𝑡
(
𝑊𝑡
1 − 𝛼

)
1−𝛼

(
𝑅𝑡
𝛼
)
𝛼

 
Price Level 

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 Equilibrium Condition 

log 𝐴𝑡 = (1 − 𝜌𝐴). log 𝐴𝑆𝑆 + 𝜌𝐴. log 𝐴𝑡−1 + 𝜖𝑡 Productivity Shock 

Source: Adapted from Costa Jr. (2016, p. 42) 

 

 

The system of equations in Table 2 will be used to determine the following 

endogenous variables at the steady state: 𝑌𝑆𝑆, 𝐶𝑆𝑆, 𝐼𝑆𝑆, 𝐾𝑆𝑆,𝐿𝑆𝑆,𝑊𝑆𝑆, 𝑅𝑆𝑆   and 𝑃𝑆𝑆. Prices are 

the first values that must be found (𝑊𝑆𝑆, 𝑅𝑆𝑆 and 𝑃𝑆𝑆).  

To do so, we must consider the Walras’ Law, which states that for any price vector 

𝒑 there is 𝒑𝒛(𝒑) ≡ 0 (i.e., the demand excess value is identically zero). In short, 

considering the Walras’ Law, the economy’s general price level can be normalized (𝑃𝑆𝑆 =

1).21 

 

 

                                                           
21 See Costa Jr. (2016, p. 43) for a proof of the Walras’ Law and how the economy’s general price can be 

normalized (𝑃𝑆𝑆 = 1). 
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Table 2 - Model’s equations at the steady state 

Households  Firms  
Equilibrium 

Condition 
 

 

𝐶𝑆𝑆
𝜎 . 𝐿𝑆𝑆

𝜑
=
𝑊𝑆𝑆
𝑃𝑆𝑆

 

 

(56) 

 

𝐾𝑆𝑆 = 𝛼.
𝑌𝑆𝑆
𝑅𝑆𝑆
𝑃𝑆𝑆

 

 

(59) 𝑌𝑆𝑆 = 𝐶𝑆𝑆 + 𝐼𝑆𝑆 (63) 

1

= 𝛽 (1 − 𝛿 +
𝑅𝑆𝑆
𝑃𝑆𝑆
) 

 

(57) 

𝐿𝑆𝑆 = (1 − 𝛼).
𝑌𝑆𝑆
𝑊𝑆𝑆
𝑃𝑆𝑆

 

 

(60)   

𝐼𝑆𝑆 = 𝛿𝐾𝑆𝑆 

 
(58) 

𝑌𝑆𝑆 = 𝐾𝑆𝑆
𝛼 . 𝐿𝑆𝑆

1−𝛼 

 
(61)   

  

𝑃𝑆𝑆 =

(
𝑊𝑆𝑆

1−𝛼
)
1−𝛼

(
𝑅𝑆𝑆

𝛼
)
𝛼

  

 

(62)   

Source: Adapted from Costa Jr. (2016, pp. 42-43) 

 

Now, we will use equation (57) in order to find 𝑅𝑆𝑆: 

 

 
𝑅𝑆𝑆 = 𝑃𝑆𝑆 [(

1

𝛽
) − (1 − 𝛿)] 

 

(64) 

Note that 𝑅𝑆𝑆 is a function of only the normalized general price level parameters, 

therefore its value can be determined. Now, it simply remains to find the steady state of 

the wage level 𝑊𝑆𝑆. 

From (62): 

 

 𝑊𝑆𝑆
1−𝛼 = 𝑃𝑆𝑆(1 − 𝛼)

1−𝛼 (
𝛼

𝑅𝑆𝑆
)
𝛼

  
 

 
𝑊𝑆𝑆 = (1 − 𝛼)𝑃𝑆𝑆

1
1−𝛼 (

𝛼

𝑅𝑆𝑆
)

𝛼
1−𝛼

 

 

(65) 
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Now, in order to satisfy the equilibrium condition, we must determine 𝐶𝑆𝑆 and 𝐼𝑆𝑆, 

that is, the variables of aggregate demand. The idea underlying the notion of equilibrium 

in these models is a condition of market adjustment. Formally speaking, it means that, 

given k markets, if demand equals supply in 𝑘 − 1 markets and 𝑃𝑘 > 0, then demand 

must be equal to supply in the 𝑘𝑡ℎ market. Otherwise, Walras’ Law would be violated 

(Costa Jr., 2016). 

Thus, finding the equilibrium condition means meeting the input market 

conditions, that is, finding the equilibrium between supplies and demands of labor and 

capital. 

To this end, we first need to substitute (60) in equation (56) and to solve for 𝐶𝑆𝑆: 

 

 𝐶𝑆𝑆
𝜎 [(1 − 𝛼).

𝑌𝑆𝑆
𝑊𝑆𝑆
𝑃𝑆𝑆

]

𝜑

=
𝑊𝑆𝑆
𝑃𝑆𝑆

 

 

 𝐶𝑆𝑆 =
1

𝑌𝑆𝑆
𝜑
𝜎

[
𝑊𝑆𝑆
𝑃𝑆𝑆

(

𝑊𝑆𝑆
𝑃𝑆𝑆
1 − 𝛼

)

𝜑

]

1
𝜎

 

(66) 

 

To find 𝐼𝑆𝑆, we need to replace (59) in equation (58): 

 

 
𝐼𝑆𝑆 = (

𝛿𝛼

𝑅𝑆𝑆
) . 𝑌𝑆𝑆 

 

(67) 

Finally, substituting (66) and (67) into expression (63), we find 𝑌𝑆𝑆: 

 

𝑌𝑆𝑆 =
1

𝑌𝑆𝑆
𝜑
𝜎

[
𝑊𝑆𝑆
𝑃𝑆𝑆

(

𝑊𝑆𝑆
𝑃𝑆𝑆
1 − 𝛼

)

𝜑

]

1
𝜎

+ (
𝛿𝛼

𝑅𝑆𝑆
) . 𝑌𝑆𝑆 

 (1 −
𝛿𝛼

𝑅𝑆𝑆
) . 𝑌𝑆𝑆 =

1

𝑌𝑆𝑆
𝜑
𝜎

[
𝑊𝑆𝑆
𝑃𝑆𝑆

(

𝑊𝑆𝑆
𝑃𝑆𝑆
1 − 𝛼

)

𝜑

]

1
𝜎
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𝑌𝑆𝑆 = (

𝑅𝑆𝑆
𝑅𝑆𝑆 − 𝛿𝛼

)

𝜎
𝜎+𝜑

[
𝑊𝑆𝑆
𝑃𝑆𝑆

(

𝑊𝑆𝑆
𝑃𝑆𝑆
1 − 𝛼

)

𝜑

]

1
𝜎+𝜑

 

 

(68) 

With the equations determined at the steady state and using the calibrated data 

shown in Table 3, we arrive at the steady state values for the variables (Table 4). 

 

Table 3 - Calibrated Values of the Structural Model 

Parameter Meaning Calibrated Value 

𝝈 Relative risk aversion 

coefficient 

2 

𝝋 Marginal disutility of labor 

supply 

1.5 

𝜶 Elasticity of capital 

production 

0.35 

𝜷 Discount factor 0.985 

𝜹 Depreciation rate 0.025 

𝝆𝑨 Autoregressive parameter 

of productivity 

0.95 

𝝈𝑨 Standard deviation of 

productivity 

0.01 

Adapted from Costa Jr. (2016, p. 47).  

 

One last feature regarding RBC models, which – in fact – extends to all non-linear 

models in general, is that handling and solving them can be very grueling. Contrariwise, 

linear models are often easier to handle. So, one solution would be converting a non-

linear model to a sufficiently appropriate linear approximation, such that its resolution 

helps to understand the behavior of the underlying non-linear system. The standard 

procedure used by economists is the log-linearization around the model’s steady state22. 

                                                           
22 Costa Jr. (2016, pp. 48-52) shows a method of log-linearization, which is called the Uhlig’s method. It is 

worth saying that some software (e.g., Dynare) can solve DSGE models without the need of linearization. 

We will not present the linearization here. For the formalization and analysis of impulse-response functions 

of the presented model, see Costa Jr. (2016, pp. 48-57). 
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Table 4 - Values of Variables at the Steady State 

Variable Steady State Value 

A 1 

R 0.040 

W 2.084 

Y 2.338 

I 0.508 

C 1.829 

L 0.729 

K 20.338 

Source: Costa Jr. (2016, p. 47) 

 

Now that we have presented the formalization and the main assumptions of a basic 

RBC model, we want to summarize these types of models with six characteristics, 

following Carlin and Soskice (2015, pp. 589-590): 

a) There is a large number of identical agents in the economy; 

b) Agents are assumed to live forever and each one is referred to as 

“representative agent”; 

c) It is a world with perfect competition and perfect information; 

d) Expectations are formed rationally; 

e) There is total flexibility of nominal wages and prices. Thus, one shall work 

entirely in real terms; 

f) The economy may only be disturbed by technology shocks, which have inbuilt 

persistence, that is, they die out gradually over time. 

 

2.4 NK-Models 

 

2.4.1 Introduction 

 

Based on Keynesian principles, NK theory embraces the idea that economies are 

subject to market failures, which generate fluctuations. On the contrary, RBC theory 

states that fluctuations are natural and efficient responses to the technological state of an 
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economy. Thus, for the RBC approach, the aggregate economy is in perfect competition 

on the demand and on the supply sides (Carlin and Soskice, 2015). 

An important consequence is that governments have no active role in the 

macroeconomics of RBCs, while in the NK approach governments may have an 

important role in improving welfare. 

According to Carlin and Soskice (2015, p. 609): 

 

When the economy is disturbed by shocks, the cycles that arise in the RBC 

model are equilibrium cycles. They are also efficient cycles because they 

represent first best outcomes: the labor market always clears. There is no role 

for a policy maker to improve welfare. In the NK model, a second kind of 

imperfection in addition to monopoly power in the goods market, named 

rigidity, keeps the economy away from the flexible price equilibrium in a way 

that could be improved on by the intervention of a policy maker. This explains 

the welfare-enhancing role of a central bank in this model and the rationale for 

a Taylor rule. Nevertheless, these cycles are still equilibrium cycles as they 

result from forward-looking best-response decision making by all parties. […] 

Using a Taylor rule, the forward-looking central bank can improve welfare by 

steering the economy back to the flexible price equilibrium at least welfare 

cost. 

 

The basic RBC model presented before is fully based on the assumption of perfect 

competition in both goods and inputs markets. But if the structure of perfect competition 

is removed, what happens? The answer to this question is what NK-models try to give us, 

i. e., with the introduction of imperfect competition – that is the heart of the NK-modelling 

– how would the economy behave? 

For this basic NK-model, we will maintain the same structure of households 

behavior, but we will make some significant alterations to the structure of the production 

sector23. 

 

2.4.2  Theoretical Structure behind NK-Models 

 

This section presents the ideas of imperfect competition and price rigidity, which 

are the key-concepts to properly understand the construction and formalization of these 

types of models 

 

                                                           
23 This kind of model was initially developed by Rotemberg (1982), Blanchard and Kiyotaki (1987), 

Rotemberg and Woodford (1997), and others. 
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2.4.2.1 Differentiated Products and the Consumption Aggregator 

 

In the real world, consumers buy a large number of goods and services that give 

them “utility”. NK-models consider that there is a large number of consumption options 

available in the market, with slightly difference between them. One way to adapt the use 

of a single consumption good is assuming that everything is made up of these many 

differentiated products. 

Formally, it is assumed that consumption is a function of 𝑁 different products: 

 𝑐 = 𝑐(𝑐1, 𝑐2, … , 𝑐𝑁),  

 

where 𝑐1 is a type 1 consumer good, 𝑐2 is a type 2 consumer good and so on. Thus, having 

𝑁 different products, the total consumption will be a function of 𝑁 different types of 

consumer goods, formally known as a consumption aggregator function, which must 

satisfy two properties: 

 

 
𝜕𝑐(⋅)

𝜕𝑐𝑗
> 0 

 

 

𝜕2𝑐(∙)

𝜕𝑐𝑗2
< 0 

 

 

The first represents that the total consumption is an increasing function of a 𝑗 type 

good. The second one means that the total consumption function increases at diminishing 

rates. 

The aggregate consumption function most used in NK-models is a CES (Constant 

Elasticity of Substitution): 

 

𝑐(𝑐1, 𝑐2, … , 𝑐𝑁) = [(𝑐1)
𝜓−1
𝜓 + (𝑐2)

𝜓−1
𝜓 +⋯+ (𝑐𝑁)

𝜓−1
𝜓 ]

𝜓
𝜓−1
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In this expression, 𝜓 is the elasticity of substitution between the differentiated 

goods.24 Note that, for an aggregate function with two goods only, that is, 𝑐(𝑐1, 𝑐2) =

[(𝑐1)
𝜓−1

𝜓 + (𝑐2)
𝜓−1

𝜓 ]

𝜓

𝜓−1

, the elasticity of substitution measures the proportional change in 

𝑐1/𝑐2 in relation to the proportional change in the marginal rate of substitution (𝑀𝑅𝑆) 

along an indifference curve. That is: 

 

 𝜓 =
%∆(𝑐1/𝑐2)

%∆𝑀𝑅𝑆
=
𝜕(𝑐1/𝑐2)

𝜕𝑀𝑅𝑆
.
𝑀𝑅𝑆

(𝑐1/𝑐2)
=
𝜕ln (𝑐1/𝑐2)

𝜕 ln𝑀𝑅𝑆
 

 

 

 

2.4.2.2 Monopolistic Competition 

 

The core idea of NK-models lies in the assumption that each of the 𝑁 

differentiated products is presumed to be crafted by different firms, which are in 

monopolistic competition. 

The theoretical idea of monopolistic competition is that all goods are, to some 

degree, imperfect substitutes for one another. In the economic literature, monopolistic 

competition is an intermediate theoretical basis between pure monopoly and perfect 

competition.  

From RBC model’s assumptions, we saw that – in a perfect competition 

framework – firms are price-takers, in the sense that they do not have the power to decide 

the price of their goods and because there is perfect substitutability among all products in 

the economy. On the contrary, in monopolistic competition, firms often define the price 

of their goods. 

 

 

 

 

 

                                                           
24This parameter has great economic significance in NK-models, as it determines to what degree, from a 

consumer’s point of view, products differ from one another. NK-models usually assume 
𝜔

𝜔−1
> 1, that is 

the goods are imperfect substitutes. 
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2.4.2.3 Price Stickiness 

 

One of the main challenges of NK theory is to demonstrate how wages and prices 

stickiness can result from the behavior of optimizing agents. Generally, the following 

stylized facts about changes in prices and wages are considered by the literature: 

a) Prices and wages are rigid for some period of time; 

b) Prices and wages are readjusted two or three times a year, on average; 

c) High inflation are frequently caused by prices and wages being adjusted 

frequently; 

d) Prices and wages are not adjusted at the same time; 

e) Changes in prices of tradable goods occur more frequently than with non-

tradable goods. 

 

Thus, the concept of price stickiness refers to a situation where the price of a good 

does not change readily to a new market-clearing price (equilibrium price) when there are 

shifts in the demand and/or the supply curves. 

 

2.4.3 A Basic NK-Model25 

 

To develop this basic NK-model, we have to introduce price stickiness and 

monopolistic competition. For this purpose, we will maintain the assumptions that we are 

facing a closed-economy and that there is no currency in the economy26. 

 

 

2.4.3.1 Households 

 

Once again, we will assume a representative infinitely-lived household, seeking 

to maximize: 

 

                                                           
25 We will follow the basic NK-model proposed in Gali (2008). 
26 For our purposes of formalization, we are maintaining these assumptions. However, more complicated 

DSGE models try to add currency and to deal with an open-economy.  
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𝐸0∑𝛽𝑡𝑈(𝐶𝑡𝑁𝑡)

∞

𝑡=0

 

  

(69) 

 In (69), 𝑁𝑡 denotes hours of work or employment and 𝐶𝑡 is a consumption index 

given by: 

 

 𝐶𝑡 ≡ (∫ 𝐶𝑡(𝑖)
1−
1
𝜀 . 𝑑𝑖 

1

0

)

𝜀
𝜀−1

 (70) 

with 𝐶𝑡(𝑖) representing the quantity of good 𝑖 consumed by the household in period 𝑡. 

 

The period utility 𝑈(𝐶𝑡𝑁𝑡) is assumed to be continuous and twice differentiable, 

with: 

 

 

𝑈𝑐,𝑡 ≡
𝜕𝑈(𝐶𝑡𝑁𝑡)

𝜕𝐶𝑡
> 0 

 

𝑈𝑐𝑐,𝑡 ≡
𝜕2𝑈(𝐶𝑡𝑁𝑡)

𝜕𝐶𝑡
2 ≤ 0 

 

𝑈𝑛,𝑡 ≡
𝜕𝑈(𝐶𝑡𝑁𝑡)

𝜕𝑁𝑡
≤ 0 

 𝑈𝑛𝑛,𝑡 ≡
𝜕2𝑈(𝐶𝑡𝑁𝑡)

𝜕𝑁𝑡
2 ≤ 0 

 

 

 

 

 

 

 

 

In words, it means that the marginal utility of consumption 𝑈𝑐,𝑡 is assumed to be 

positive and nonincreasing, whilst the marginal disutility of labor,−𝑈𝑛,𝑡, is positive and 

nondecreasing.  

Assume the existence of a continuum of goods represented by the interval [0,1]. 

The maximization of (69) faces a sequence of flow budget constraints given by: 

 

 ∫ 𝑃𝑡(𝑖)𝐶𝑡(𝑖). 𝑑𝑖 + 𝑄𝑡𝐵𝑡 ≤ 𝐵𝑡−1 +𝑊𝑡𝑁𝑡 + 𝑇𝑡

1

0

 (71) 

for 𝑡 = 0,1,2, …, where 𝑃𝑡(𝑖) is the price of good; 𝑊𝑡 is the nominal wage; 𝐵𝑡 represents 

the quantity of one-period, nominally riskless, discount bonds acquired in period 𝑡 and 

maturing in period 𝑡 + 1; 𝑄𝑡 is the price paid for each bond at maturity; 𝑇𝑡 represents 
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lump-sum additions or subtractions to period income, expressed in nominal terms. 𝑁𝑡  is 

the hours of work (or the measure of household members employed). 𝑃𝑡,𝑊𝑡 and 𝑄𝑡 are 

assumed to take as given. 

 

In addition to (71), we will consider a solvency constraint of the form: 

 

 lim
𝑇→∞

𝐸𝑡(𝐵𝑡) ≥ 0 (72) 

 

Condition (72) prevents household from engaging in Ponzi-type schemes. 

Now, with differentiated goods, household must decide how to allocate its 

consumption expenditures. This requires the maximization of 𝐶𝑡 for any given level of 

expenditures ∫ 𝑃𝑡(𝑖)𝐶𝑡(𝑖). 𝑑𝑖
1

0
. 

As shown in Gali, (2008, p. 61), the solution to that problem yields the set of 

demand equations: 

 

 𝐶𝑡(𝑖) = (
𝑃𝑡(𝑖)

𝑃𝑡
)
−𝜀

. 𝐶𝑡 (73) 

for all 𝑖 ∈ [0,1], where 𝑃𝑡 ≡ [∫ 𝑃𝑡(𝑖)
1−𝜀 . 𝑑𝑖

1

0
]

1

1−𝜀
 is an aggregate price index. 

 

Conditional on this optimal behavior, total consumption expenditures can be 

written as the product of the price index times the quantity index, i.e.: 

 

 ∫ 𝑃𝑡(𝑖)𝐶𝑡(𝑖). 𝑑𝑖 = 𝑃𝑡𝐶𝑡

1

0

 (74) 

 

Plugging (74) into (71) yields: 

 

 𝑃𝑡𝐶𝑡 + 𝑄𝑡𝐵𝑡 ≤ 𝐵𝑡−1 +𝑊𝑡𝑁𝑡 + 𝑇𝑡 (75) 
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The optimality conditions implied by the maximization of (69) subject to (75) are 

given by27: 

 −
𝑈𝑛,𝑡
𝑈𝑐,𝑡

=
𝑊𝑡
𝑃𝑡

 (76) 

 𝑄𝑡 = 𝛽. 𝐸𝑡 [
𝑈𝑐,𝑡+1
𝑈𝑐,𝑡

.
𝑃𝑡
𝑃𝑡+1

] (77) 

 

Note that this model is assuming a period utility given by: 

 

 𝑈(𝐶𝑡𝑁𝑡) =
𝐶𝑡
1−𝜎

1 − 𝜎
−
𝑁𝑡
1+𝜑

1 + 𝜑
 (78) 

 

Thus, equation (76) can be rewritten in log-linear form as: 

 

 𝑤𝑡 − 𝑝𝑡 = 𝜎. 𝑐𝑡 + 𝜑. 𝑛𝑡 (79) 

where lower case letters denote the natural logs of the corresponding variable (i.e., 𝑐𝑡 ≡

log 𝐶𝑡). Note that (79) can be interpreted as a competitive labor supply schedule, which 

determines the quantity of labor supplied as a function of the real wage, given the 

marginal utility of consumption (which, under the assumptions, is a function of 

consumption only). 

 A log-linear approximation of (77) around the steady state, with constant rates of 

inflation and consumption growth, yields the log-linearized Euler equation: 

 𝑐𝑡 = 𝐸𝑡(𝑐𝑡+1) −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝜌 (80) 

where 𝑖𝑡 ≡ − log𝑄𝑡; 𝜌 ≡ − log𝛽 and 𝜋𝑡+1 ≡ 𝑝𝑡+1 − 𝑝𝑡 is the rate of inflation between 𝑡 

and 𝑡 + 1, with 𝑝𝑡 ≡ log𝑃𝑡 . 

Notice that 𝑖𝑡 corresponds to the 𝑙𝑜𝑔 of the gross yield on the one-period bond, 

that is, the nominal interest rate. Following the same logic, 𝜌 can be interpreted as the 

discount rate of household. 

 

 

                                                           
27 For the sake of briefness, we will skip the resolution of this maximization problem, but it is properly 

demonstrated in Gali (2008, p. 17). 
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2.4.3.2 Firms 

 

Consider a continuum of firms indexed by 𝑖 ∈ [0,1]. Also, assume that each firm 

produces a differentiated good, using the same technology. The production function is 

given by: 

 

 𝑌𝑡(𝑖) = 𝐴𝑡 . 𝑁𝑡(𝑖)
1−𝛼 (81) 

where 𝐴𝑡 represents the level of technology, which is identical to all firms and evolves 

exogenously over time. 

 

Assume that all firms decide how much to produce in each period following a 

Calvo’s rule (Calvo, 1983), i. e., independent of the time elapsed since the last adjustment, 

each firm can reset its price only with probability 1 − 𝜃 in any given period, whilst 𝜃 

firms maintain their prices unchanged. As a result, the average duration of a price is given 

by (1 − 𝜃)−1. Note that in this context 𝜃 is considered a natural index of price stickiness.  

 

2.4.3.2.1 Aggregate Price Level Dynamics 

 

Let 𝑆(𝑡) ⊂ [0,1] represent the set of firms not reoptimizing prices in period 𝑡. 

Using the definition of the aggregate price level (see equation (73)) and considering the 

fact that all firms choose an identical price 𝑃𝑡
∗ when resetting their prices28: 

 

 𝑃𝑡 = [∫ 𝑃𝑡−1(𝑖)
1−𝜀 . 𝑑𝑖 + (1 − 𝜃)(

𝑆(𝑡)

𝑃𝑡
∗)1−𝜀]

1
1−𝜀

 

 

 𝑃𝑡 = [𝜃(𝑃𝑡−1)
1−𝜀 + (1 − 𝜃)(𝑃𝑡

∗)1−𝜀]
1
1−𝜀 (82) 

where (82) comes from the fact that the distribution of prices among firms not adjusting 

in period 𝑡 corresponds to the distribution of effective prices in period 𝑡 − 1, but with 

total mass reduced to 𝜃. 

 

 

                                                           
28 All firms choose the same price because they face an identical problem. 



53 
 
 

 
 

 

Dividing both sides of (82) by 𝑃𝑡−1: 

 

 𝜋𝑡
1−𝜀 = 𝜃 + (1 − 𝜃) (

𝑃𝑡
∗

𝑃𝑡−1
)
1−𝜀

 (83) 

where 𝜋𝑡 =
𝑃𝑡

𝑃𝑡−1
. Notice that in a steady state with zero inflation 𝑃𝑡

∗ = 𝑃𝑡−1 = 𝑃𝑡, for all 𝑡. 

Finally, log-linearizing (83) around 𝜋𝑡 = 1 and 
𝑃𝑡
∗

𝑃𝑡−1
= 1 yields: 

 

 𝜋𝑡 = (1 − 𝜃)( 𝑝𝑡
∗ − 𝑝𝑡−1) (8456) 

 

Equation (84) shows that, in this model, inflation occurs when firms reoptimize 

and choose a price that differs from the economy’s average price in the previous period. 

In order to understand the evolution of inflation over time, we need to analyze the factors 

underlying the price-setting decisions of the firms. 

 

2.4.3.2.2 Optimal Price Setting 

 

A firm reoptimizing in period 𝑡 will choose the price 𝑃𝑡
∗ that maximizes the current 

market value of the profits generated while that price remains effective. The maximization 

problem is: 

 

 max
𝑃𝑡
∗
∑𝜃𝑘𝐸𝑡[𝑄𝑡,𝑡+𝑘(𝑃𝑡

∗𝑌𝑡+𝑘|𝑡 −Ψ𝑡+𝑘(𝑌𝑡+𝑘|𝑡))]

∞

𝑘=0

 
 

subject to 

 𝑌𝑡+𝑘|𝑡 = (
𝑃𝑡
∗

𝑃𝑡+𝑘
)
𝜀

. 𝐶𝑡+𝑘 (85) 

for 𝑘 = 0,1,2, …, where 𝑄𝑡,𝑡+𝑘 ≡ 𝛽
𝑘 (

𝐶𝑡+𝑘

𝐶𝑡
)
−𝜎

. (
𝑃𝑡

𝑃𝑡+𝑘
) is the stochastic discount factor for 

nominal payoffs; Ψ(⋅) is the cost function, and 𝑌𝑡+𝑘|𝑡  denotes output in period 𝑡 + 𝑘 for 

a firm that last reset its price in period 𝑡. 
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The first-order condition for (85) is: 

 

 ∑𝜃𝑘𝐸𝑡

∞

𝑘=0

[𝑄𝑡,𝑡+𝑘𝑌𝑡+𝑘|𝑡(𝑃𝑡
∗ −Φψ𝑡+𝑘|𝑡)] = 0 (86) 

where ψ𝑡+𝑘|𝑡 ≡ Ψ𝑡+𝑘
´ (𝑌𝑡+𝑘|𝑡) denotes the (nominal) marginal cost in period 𝑡 + 𝑘 for any 

firm which last reset its price in period 𝑡 and Φ ≡
𝜀

𝜀−1
 . 

 

Note that when 𝜃 = 0, that is, when there are no price rigidities, (86) turns into 

the optimal price-setting condition under flexible prices 𝑃𝑡
∗ = Φψ𝑡|𝑡, which allows us to 

interpret Φ as the desired markup when there are no constraints on the frequency of price 

adjustment.  

The following step is to linearize (86) around the zero inflation steady state. 

However, before doing so, it is useful to rewrite it in terms of variables that have a well-

defined value in that steady state. Letting 𝜋𝑡,𝑡+𝑘 ≡
𝑃𝑡+𝑘

𝑃𝑡
 and dividing by 𝑃𝑡−1, equation 

(86) becomes: 

 

 ∑𝜃𝑘𝐸𝑡

∞

𝑘=0

[𝑄𝑡,𝑡+𝑘𝑌𝑡+𝑘|𝑡 (
𝑃𝑡
∗

𝑃𝑡−1
−ΦMC𝑡+𝑘|𝑡𝜋𝑡−1,𝑡+𝑘)] = 0 (87) 

where MC𝑡+𝑘|𝑡 ≡
ψ𝑡+𝑘|𝑡

𝑃𝑡+𝑘
 is the real marginal cost in period 𝑡 + 𝑘 for a firm that last set its 

price in period 𝑡. 

 

In the zero inflation steady state, 
𝑃𝑡
∗

𝑃𝑡−1
= 1 and 𝜋𝑡−1,𝑡+𝑘 = 1. Moreover, constancy 

of the price level implies that 𝑃𝑡
∗ = 𝑃𝑡+𝑘 in that steady state, from which it follows that 

𝑌𝑡+𝑘|𝑡 = 𝑌 and MC𝑡+𝑘|𝑡 = 𝑀𝐶, because each firm will be producing the same quantity of 

output. In addition, 𝑄𝑡,𝑡+𝑘 = 𝛽
𝑘 must hold in that steady state. Thus, 𝑀𝐶 = 1/Φ. 

A first-order Taylor expansion of (87) around the zero inflation steady state yields: 

 

 𝑝𝑡
∗ − 𝑝𝑡−1 = (1 − 𝛽𝜃)∑(𝛽𝜃)𝑘𝐸𝑡[𝑚𝑐̂𝑡+𝑘|𝑡 + (𝑝𝑡+𝑘 − 𝑝𝑡−1)]

∞

𝑘=0

 (8857) 
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where 𝑚𝑐̂𝑡+𝑘|𝑡 ≡ 𝑚𝑐𝑡+𝑘|𝑡 −𝑚𝑐 denotes the 𝑙𝑜𝑔 deviation of marginal cost from its 

steady state value 𝑚𝑐 = −𝜇, and where 𝜇 ≡ logΦ is the 𝑙𝑜𝑔 of the desired gross markup 

(which, for Φ → 1 is approximately equal to the net markup Φ− 1). 

 

Let us rewrite (88) in a way that we can obtain more intuition about the factors 

determining a firm’s price-setting decision. 

 

 𝑝𝑡
∗ = 𝜇 + (1 − 𝛽𝜃)∑(𝛽𝜃)𝑘𝐸𝑡(𝑚𝑐𝑡+𝑘|𝑡 + 𝑝𝑡+𝑘)

∞

𝑘=0

 (89) 

 

Notice from (89) that firms, when resetting their prices, will choose a price that 

corresponds to their desired markup over a weighted average of their current and expected 

(nominal) marginal costs, with the weights being proportional to the probability of the 

price remaining effective at each horizon 𝜃𝑘. 

 

2.4.3.2.3 Equilibrium 

 

Market clearing in the goods market implies: 

 

 𝑌𝑡(𝑖) = 𝐶𝑡(𝑖) (90) 

for all 𝑖 ∈ [0,1] and all 𝑡. 

 

Defining aggregate output as 𝑌𝑡 ≡ (∫ 𝑌𝑡(𝑖)
1−

1

𝜀 . 𝑑𝑖
1

0
)

𝜀

𝜀−1
 it follows that: 

 

 𝑌𝑡 = 𝐶𝑡 (91) 

 

Equation (91) must hold for all 𝑡. 

 

Combining the Euler equation (80) with the above goods market clearing 

condition (91) yields the equilibrium condition: 
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 𝑦𝑡 = 𝐸𝑡(𝑦𝑡+1) −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝜌 (92) 

 

Market clearing in the labor market requires: 

 

 𝑁𝑡 = ∫ 𝑁𝑡(𝑖). 𝑑𝑖
1

0

 (93) 

 

Using (81): 

 

 𝑁𝑡 = ∫ (
𝑌𝑡(𝑖)

𝐴𝑡
)

1
1−𝛼

. 𝑑𝑖
1

0

 (94) 

 

From (73) and (90):   

 

 𝑁𝑡 = (
𝑌𝑡
𝐴𝑡
)

1
1−𝛼

∫ (
𝑃𝑡(𝑖)

𝑃𝑡
)
− 

𝜀
1−𝛼

. 𝑑𝑖
1

0

 (95) 

 

Taking logs: 

 

 (1 − 𝛼)𝑛𝑡 = 𝑦𝑡 − 𝑎𝑡 + 𝑑𝑡 (96) 

where 𝑑𝑡 ≡ (1 − 𝛼). log ∫ (
𝑃𝑡(𝑖)

𝑃𝑡
)
− 

𝜀

1−𝛼1

0
 and 𝑑𝑖 is a measure of price dispersion across 

firms (and, hence, output).  

 

In a neighborhood of the zero inflation steady state, 𝑑𝑡 is equal to zero up to a 

first-order approximation. Thus, (96) becomes: 

 

 𝑦𝑡 = 𝑎𝑡 + (1 − 𝛼)𝑛𝑡 (97) 

 

We can interpret (97) as an approximated relation between aggregate output, 

employment and technology. 
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Now, let us derive an individual firm’s marginal cost in terms of the economy’s 

average real marginal cost: 

 

 𝑚𝑐𝑡 = (𝑤𝑡 − 𝑝𝑡) − 𝑚𝑝𝑛𝑡  

 𝑚𝑐𝑡 = (𝑤𝑡 − 𝑝𝑡) − (𝑎𝑡 − 𝛼𝑛𝑡) − log(1 − 𝛼)  

 𝑚𝑐𝑡 = (𝑤𝑡 − 𝑝𝑡) −
1

1 − 𝛼
(𝑎𝑡 − 𝛼𝑦𝑡) − log(1 − 𝛼) (98) 

for all 𝑡. Note that we defined the economy’s average marginal product of labor 𝑚𝑝𝑛𝑡 in 

a way consistent with (97). 

 

Knowing that: 

 𝑚𝑐𝑡+𝑘|𝑡 = (𝑤𝑡+𝑘 − 𝑝𝑡+𝑘) − 𝑚𝑝𝑛𝑡+𝑘|𝑡  

 𝑚𝑐𝑡+𝑘|𝑡 = (𝑤𝑡+𝑘 − 𝑝𝑡+𝑘) −
1

1 − 𝛼
(𝑎𝑡+𝑘 − 𝛼𝑦𝑡+𝑘|𝑡) − log(1 − 𝛼) 

 

then: 

 
𝑚𝑐𝑡+𝑘|𝑡 = 𝑚𝑐𝑡+𝑘 +

𝛼

1 − 𝛼
(𝑦𝑡+𝑘|𝑡 − 𝑦𝑡+𝑘) 

 

 

Using the demand schedule (73) combined with the market clearing condition 

(91), we get: 

 

 
𝑚𝑐𝑡+𝑘|𝑡 = 𝑚𝑐𝑡+𝑘 −

𝛼𝜀

1 − 𝛼
(𝑝𝑡
∗ − 𝑝𝑡+𝑘) 

 

(99) 

Notice that assuming 𝛼 = 0 (constant returns to scale) 𝑚𝑐𝑡+𝑘|𝑡 = 𝑚𝑐𝑡+𝑘, i.e., 

marginal cost becomes independent of the level of production and, hence, is common 

across firms. 

Substituting (99) into (88) and rearranging terms yields: 

 

 𝑝𝑡
∗ − 𝑝𝑡−1 = (1 − 𝛽𝜃)∑(

∞

𝑘=0

𝛽𝜃)𝑘𝐸𝑡[Θ 𝑚𝑐̂𝑡+𝑘 + (𝑝𝑡+𝑘 − 𝑝𝑡−1)] 
 

 𝑝𝑡
∗ − 𝑝𝑡−1 = (1 − 𝛽𝜃). Θ∑(

∞

𝑘=0

𝛽𝜃)𝑘𝐸𝑡(𝑚𝑐̂𝑡+𝑘) +∑(

∞

𝑘=0

𝛽𝜃)𝑘 𝐸𝑡(𝜋𝑡+𝑘) (100) 
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with Θ ≡
1−𝛼

1−𝛼+𝛼𝜀
≤ 1. 

 

Equation (100) can be rewritten in a more compacted way, as follows: 

 

 𝑝𝑡
∗ − 𝑝𝑡−1 = 𝛽𝜃. 𝐸𝑡[𝑝𝑡+1

∗ − 𝑝𝑡] + (1 − 𝛽𝜃). Θ.𝑚𝑐̂𝑡 + 𝜋𝑡 (101) 

 

Finally, combining (101) and (84) yields the inflation equation: 

 

 𝜋𝑡 = 𝛽. 𝐸𝑡[𝜋𝑡+1] + 𝜆𝑚𝑐̂𝑡 (102) 

where 𝜆 ≡
(1−𝜃)(1−𝛽𝜃)

𝜃
Θ is strictly decreasing in the index of price stickiness 𝜃, in the 

measure of returns to scale 𝛼, and in the elasticity of demand 𝜀. 

 

Let us express (102) as the discounted sum of current and expected future 

deviations of real marginal costs from the steady state, that is: 

 

 𝜋𝑡 = 𝜆∑𝛽𝑘𝐸𝑡(𝑚𝑐̂𝑡+𝑘)

∞

𝑘=0

 (103) 

 

Defining the economy’s average markup as 𝜇𝑡 = −𝑚𝑐𝑡, we can see that inflation 

𝜋𝑡 will be higher when firms expect average markups to be below their steady state (i.e., 

desired) level 𝜇, for in that case firms that have the chance to reset their prices will choose 

a price above the average price of the economy in order to realign their markup closer to 

its desired level. 

Notice that the mechanism underlying fluctuations in the aggregate price level and 

inflation in this model is a consequence of purposeful price-setting decisions by firms, 

which adjust their prices according to a current and anticipated cost conditions. 

Now, we will derive a relation between the economy’s real marginal cost and a 

measure of aggregate economic activity by using the household’s optimally condition 

(79) and the aggregate production relation (97). Notice that regardless of the nature of 

price setting, average real marginal cost can be expressed as: 
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 𝑚𝑐𝑡 = (𝑤𝑡 − 𝑝𝑡) − 𝑚𝑝𝑛𝑡  

 𝑚𝑐𝑡 = (𝜎𝑦𝑡 + 𝜑𝑛𝑡) − (𝑦𝑡 − 𝑛𝑡) − log(1 − 𝛼)  

 𝑚𝑐𝑡 = (𝜎 +
𝜑 + 𝛼

1 − 𝛼
)𝑦𝑡 −

1 + 𝜑

1 − 𝛼
𝑎𝑡 − log(1 − 𝛼) (104) 

 

As shown at the end of section 2.4.3.2.2, under flexible prices the real marginal 

cost turns out to be constant and given by 𝑚𝑐 = −𝜇. Defining the natural level of output, 

𝑦𝑡
𝑛, as the equilibrium level of output under flexible prices: 

 

 𝑚𝑐 = (𝜎 +
𝜑 + 𝛼

1 − 𝛼
)𝑦𝑡

𝑛 −
1 + 𝜑

1 − 𝛼
𝑎𝑡 − log(1 − 𝛼) (105) 

thus implying: 

 

 𝑦𝑡
𝑛 = 𝜓𝑦𝑎

𝑛 + 𝜗𝑦
𝑛 (106) 

where  𝜗𝑦
𝑛 ≡ −

(1−𝛼)(𝜇−log(1−𝛼))

𝜎(1−𝛼)+𝜑+𝛼
> 0 and 𝜓𝑦𝑎

𝑛 ≡
1+𝜑

𝜎(1−𝛼)+𝜑+𝛼
 . 

 

It is important to notice that the presence of market power by firms has the effect 

of lowering the output level uniformly over time, without affecting its sensitivity to shifts 

in technology. 

Now, subtracting (105) from (104): 

 

 𝑚𝑐̂𝑡 = (𝜎 +
𝜑 + 𝛼

1 − 𝛼
) (𝑦𝑡 − 𝑦𝑡

𝑛) (107) 

 

Expression (107) means that the log deviation of real marginal cost from steady 

state is proportional to the log deviation of output from its flexible price counterpart. That 

deviation is referred in the literature as the output gap, and is denoted by 𝑦̃𝑡 ≡ 𝑦𝑡 − 𝑦𝑡
𝑛. 

One of the key building blocks of the basic NK-model can be obtained by 

combining (107) with (102): 

 

 𝜋𝑡 = 𝛽𝐸𝑡[𝜋𝑡+1] + 𝜅 𝑦̃𝑡 (108) 

where 𝜅 ≡ (𝜎 +
𝜑+𝛼

1−𝛼
) 
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Equation (108) relates inflation to its one period ahead forecast and the output gap. 

It is referred to as the New Keynesian Phillips Curve (NKPC) in the literature. 

A second key equation describing the equilibrium of the model is the dynamic IS 

equation (DIS). It can be obtained by rewriting (92) in terms of the output gap: 

 

 𝑦̃𝑡 = −
1

𝜎
(𝑖𝑡 − 𝐸𝑡[𝜋𝑡+1] − 𝑟𝑡

𝑛) + 𝐸𝑡[𝑦̃𝑡+1] (109) 

where 𝑟𝑡
𝑛 is the natural rate of interest, described as: 

 

 𝑟𝑡
𝑛 ≡ 𝜌 + 𝜎 𝐸𝑡[∆𝑦𝑡+1

𝑛 ]  

 𝑟𝑡
𝑛 ≡ 𝜌 + 𝜎 𝜓𝑦𝑎

𝑛  𝐸𝑡[∆𝑎𝑡+1] (110) 

 

Assume that the effects of nominal rigidities vanish asymptotically, i.e. 

lim
𝑇→∞

𝐸𝑡[𝜋𝑡+1] = 0. In this case, resolving equation (109) forward yields the expression: 

 

 𝑦̃𝑡 = −
1

𝜎
∑(𝑟𝑡+𝑘 − 𝑟𝑡+𝑘

𝑛 )

∞

𝑘=0

 (111) 

where 𝑟𝑡 ≡ 𝑖𝑡 − 𝐸𝑡[𝜋𝑡+1] is the expected real return on a one period bond, that is, the real 

interest rate. 

 

Equation (111) makes it clear that the output gap is proportional to the sum of 

current and anticipated deviations between the real interest rate and its natural 

counterpart. 

Together with an equilibrium process for the natural rate, 𝑟𝑡
𝑛, equations (108) and 

(109) constitute the non-policy block of the NK-model. Notice that this block has a simple 

iterative structure: the NKPC determines inflation given the path for the output gap, 

whereas the DIS equation determines the output gap given a path for the (exogenous) 

natural rate and the actual real rate. 

Finally, in order to close the model, one only needs to supplement (108) and (109) 

with one or more equations determining how the nominal interest rate 𝑖𝑡 behaves over 

time. In other words, a description of how the monetary policy is conducted. The main 

result of this exercise is that, in the presence of prices rigidity, the equilibrium path of 
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real variables cannot be determined independently of monetary policy, that is, monetary 

policy is non-neutral 

 

2.5 Final Remarks 

 

The models presented so far, albeit convenient for our illustrative-analytical 

demonstrations, cannot be considered rich enough to be used for many applications. Any 

policymaker wanting to forecast the long-run path of the economy or evaluate the 

macroeconomic effects of some policy intervention would certainly need considerably 

more complicated models. 

There is a large and active literature engaged in building and estimating more 

sophisticated quantitative models. Although these models are much more complicated 

and their analytical treatability is almost unmanageable, at their core, they have important 

resemblances to the models of the previous sections. Broadly speaking, they implement 

important modifications and extensions to the baseline model discussed in section 2.4.3, 

especially regarding aggregate demand, aggregate supply, credit-market imperfections 

and policy assumptions.29 

For a last observation, it is worth saying that almost all macroeconomists agree 

that models have important strengths and weaknesses. The use of models for 

macroeconomic evaluation often fall along a continuum between two extremes (although 

just a few economists actually are at either extreme): 

 

One extreme is that we are well on the way to having models of the 

macroeconomy that are sufficiently well grounded in microeconomic 

assumptions that their parameters can be thought of as structural (in the sense 

that they do not change when policies change), and that are sufficiently realistic 

that they can be used to obtain welfare-based recommendations about the 

conduct of policy. Advocates of this view can point to the facts that the models 

are built up from microeconomic foundations; that estimated versions of the 

models match some important features of fluctuations reasonably well; that 

many policymakers value the models enough to put weight on their predictions 

and recommendations; that there is microeconomic evidence for many of their 

assumptions; and that their sophistication is advancing rapidly. 

The other extreme is that the models are ad hoc constructions that are 

sufficiently distant from reality that their policy recommendations are 

unreliable and their predictions likely to fail if the macroeconomic 

environment changes. Advocates of this view can point to two main facts. First, 

despite the models’ complications, there is a great deal they leave out. For 

example, until the recent crisis, the models’ treatment of credit-market 

                                                           
29 See Romer (2012, pp. 356-360) for a briefly discussion about these extensions. 
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imperfections was generally minimal. Second, the microeconomic case for 

some important features of the models is questionable. Most notably, the 

models include assumptions that generate inertia in decision making: inflation 

indexation in price adjustment, habit formation in consumption, and 

adjustment costs in investment. The inclusion of these features is mainly 

motivated not by microeconomic evidence, but by a desire to match 

macroeconomic facts. For example, at the microeconomic level we see 

nominal prices that are fixed for extended periods, not frequently adjusted to 

reflect recent inflation. Similarly, standard models of investment motivated by 

microeconomic evidence involve costs of adjusting the capital stock, not costs 

of adjusting investment. The need to introduce these features, in this view, 

suggests that the models have significant gaps.” (Romer, 2012, pp. 360-361) 

 

The truth lies somewhere between the two extremes. Therefore, it seems important 

to understand different approaches. Exploiting diversity in macroeconomic modeling 

starts with the investigation into new possibilities that are emerging in the literature. This 

is what the next chapter intend to do. 
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3. UNDERSTANDING ABMs 

 

Not all the economists think that DSGE models are the only way to proceed 

macroeconomic analysis. In fact, there is a growing collection of papers and books trying 

to set out an alternative approach to macroeconomics without making the restrictive 

assumptions found in the DSGE models. In particular, this alternative approach relies on 

the complexity of macroeconomics, that is, the idea that macroeconomics is a complex-

dynamical system of heterogeneous agents - endowed with bounded rationality and 

limited (i. e., incomplete) information set - that interact directly and indirectly with each 

other and the environment. The advocates of this approach believe that macroeconomic 

theory “should be explained as emerging from the continuous adaptive dispersed 

interactions of a multitude of autonomous, heterogeneous and bounded rational agents 

living in a truly uncertain environment” (Delli Gatti et. al., 2011). For this end, ABMs 

would be the best methodological tool. 

It should be noted that ABMs have been employed in a number of fields, such as 

the building of an artificial stock exchanges, industrial dynamics, environmental 

regulation and the analysis of the effects of macroeconomic policies on output, 

employment and economic growth. In what follows, we focus our attention on the subset 

of ABMs evaluating the impact of macroeconomic policies, which can be 

straightforwardly compared to DSGE models and can respond to the new theoretical and 

empirical challenges raised by the Great Recession. Following the structure of Fagiolo 

and Roventini (2017), we will make a brief foray into ABMs’ issues classifying them in 

four areas: fiscal policy, monetary policy, macroprudential policy and labor market 

policy.  

 

Fiscal Policy 

The crisis of 2008 has reawaked interest for employing fiscal policies to tackle 

economic downturns. Dosi et al. (2010) try to study both the short and long-run impact 

of fiscal policies by developing an ABM that bridges Keynesian theories of demand-

generation and Schumpeterian theories of technology-fueled economic growth (the K+S 

model) 30. In the full-fledge version, the K+S model is populated by heterogeneous 

                                                           
30 See Dosi et al. (2016b) for a survey. 
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capital-good firms, consumption good-firms, consumers/workers, banks, Central Bank, 

and a public sector. Capital-good firms perform R&D and sell heterogeneous machine 

tools to consumption-good firms. Consumers supply labor to firms and fully consume 

their received income. Banks provide credit to consumption-good firms, financing their 

production and investment decisions. The Central Bank fixes the short-run interest rate 

and the government levies taxes. According to Fagiolo and Roventini (2016), the model 

of Dosi et al. (2010) can endogenously generate growth and jointly account for mild 

recessions and deep downturns. Moreover, it can also replicate an ensemble of stylized 

facts concerning both macroeconomic dynamics (e.g. cross-correlations, relative 

volatilities, output distributions) and microeconomic ones (firm size distributions, firm 

productivity dynamics, firm investment patterns). 

After having been empirically validated according to the output generated, the 

K+S model is employed to study the impact of fiscal policies (i.e., tax rate and 

unemployment benefits) on average GDP growth rate, output volatility and 

unemployment rate. The authors find that Keynesian fiscal policies are a necessary 

condition for economic growth and they can be successfully employed to reduce 

economic fluctuations. Furthermore, Dosi et al. (2013) find a strong interaction between 

income distribution and fiscal policies: the more income distribution is slanted toward 

profits, the greater the case for fiscal policies to dampen macroeconomic fragility (Fagiolo 

and Roventini, 2012, 2016). 

In Dosi et al. (2015), the authors study different fiscal austerity policies and they 

find that fiscal consolidation rules are “self-defeating”, as they depress the economy 

without improving public finances (similar conclusions are reached by Teglio et al. 

(2015)) employing the EURACE model (Cincotti et al., 2010, 2012). Moreover, the 

negative effects of fiscal policies are magnified by higher level of income inequality (Dosi 

et al., 2015). Finally, austerity policies can also reduce long-run productivity and GDP 

growth, by harming innovation rate and the diffusion of new technologies (Dosi et al., 

2016b) and firms’ investment rates (Bassi and Lang, 2016). In fact, stabilization policies 

can affect both short and long-run dynamics as found also by Russo et al. (2007) and 

Harting (2015). 

Many ABMs explore the interactions between financial instability and fiscal 

policies, as in Napoletano et al. (2015), where they build an ABM populated by 

heterogeneous households facing time-varying credit constraints. What they find is that 
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deficit-spending fiscal policy dampens the magnitude and persistence of bankruptcy 

shocks. Also, the size of the multipliers changes over time and it is related to the evolution 

of credit rationing.  

Chiarella and Di Guilmi (2012) explore the consequences of financial fragility 

from the firms’ perspective building an ABM in which the investment of heterogeneous 

firms is conditioned by market expectations. Moreover, money can be either exogenous 

or endogenous and the Government can levy taxes on profits or private wealth. The model 

shows that with endogenous money and credit, a wealth tax is a more effective 

stabilization policy than a tax on profit. In the same line, in an ABM with heterogeneous 

workers, firms, and banks interacting in markets through a decentralized matching 

protocol, Riccetti et al. (2014) find that during extend crises triggered by bank defaults 

and financial instability, the Government can stabilize the economy. 

In Dosi et al. (2016a), they study the impact of different expectation-formation 

mechanisms in the K+S model. They start from the Brock and Hommes (1997) 

framework and find that austerity policies are self-defeating even when agents can switch 

among different expectation rules (e.g. adaptive, trend-follower expectations) as in 

Anufriev et al. (2013). Moreover, in line with Gigerenzer (2007) and Gigerenzer and 

Brighton (2009), they find that the performance of the economy does not improve when 

agents are more rational. On the other hand, when agents employ Ordinary Least Square 

(OLS) to form their forecasts, the individual and collective performance worsen as 

structural breaks and Knightian uncertainty cannot be taken into account (Fagiolo and 

Roventini, 2016). Relatedly, Haber (2008) studies the interactions between different 

expectation and formation mechanisms with fiscal and monetary policies in an ABM. He 

finds out that the introduction of more classy expectations reduces the effects of fiscal 

policy, whereas it increases the impact of monetary policy. 

 

Monetary Policy 

The financial crisis of 2008 showed the importance of the financial market in 

destabilizing the economy and that monetary policy alone is not capable of putting the 

economy back on a steady growth path. Thus, in the last ten years, a number of projects 

have been initiated that aim at the development of closed macroeconomic models using 

an agent-based approach. In general, these models share the description of 

macroeconomic dynamics as the outcome of aggregation of interaction on the micro-
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level, but their focus varies quite significantly. According to Dawid et al. (2013), so far 

there is no general standard agent-based macroeconomic framework. 

According to Fagiolo and Roventini (2017), an increasing set of ABMs are 

employing Taylor rules to explore the effects of monetary policy on the economy. In this 

respect, such policy analyses exercises are like the ones conducted with DSGE models, 

but the complexity-rooted approach of ABM can bring fresh new insights. 

The model of Dosi et al. (2015) assesses the effects of a central bank following 

the achievement of a given inflation target against a central bank that has a dual goal of 

controlling inflation and employment. They find that a dual-purpose central bank is more 

efficient in stabilizing the economy without substantially increasing the inflation rate than 

a central bank that only pursues an inflation target (similar results were found in Raberto 

et al. (2008), and Delli Gatti and Desiderio (2015)).  

Delli Gatti et al. (2005) study alternative commitment vis-à-vis discretionary 

monetary strategies in an economy populated by heterogeneous, interacting firms and 

workers. They find that persistent capital market imperfections imply that monetary 

policy affects the economy through the credit channel and that money is not neutral in the 

long-run. Moreover, the Taylor principle does not sustain, and the adaptive rule 

outperforms the commitment one according to the standard loss function criterion. 

Arifovic et al. (2010) study the issue of monetary policy dynamic inconsistency 

in an ABM with a central bank and heterogeneous agents with bounded rationality. 

Agents may believe in the inflation announced by the central bank or use an adaptive 

learning process to shape their inflation expectations. This work shows that the central 

bank learns to maintain the equilibrium with a floating and positive percentage of agents 

who believe in its policy and that this result is more efficient than the equilibrium found 

in the more conventional works. Salle et al. (2013) evaluate the performance of an 

inflation targeting regime in which heterogeneous agents use heuristics and continuously 

learn to use genetic algorithm. This paper reveals that credibility in the inflation targeting 

regime has a central role in achieving monetary policy objectives and that transparency 

of the inflation target is important to increase credibility in the target regime and stabilize 

the economy. 

Cincotti et al. (2010) explore the effects of unconventional monetary policy. They 

developed an ABM based on the EURACE platform to assess the effects of quantitative-

easing monetary policy. The simulation results show that there is an improvement in the 
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economy’s performance when expansionary fiscal policy and quantitative-easing 

monetary policy are implemented. However, such expansionary policies raise inflation 

and lead to higher output volatility in the long-run. 

Arifovic and Maschek (2012) consider an open-economy background, where the 

Central Bank fixes the interest rate trying to avoid currency crisis. They find that 

decreasing the interest rate under the threat of a possible currency attack is more efficient 

than defending the currency, as the second policy may increase the outflow of funds. 

 

Financial instability, Bank regulation and Macroprudential policies 

Regarding the issue of instability and financial regulation, the work of Ashraf et 

al. (2011) develops an ABM in which heterogeneous firms interact with banks that 

provide loans to these firms. This research indicates that in steep recessions bank lending 

can stabilize the economy and that less restrictive banking regulation allows the economy 

to recover more quickly. Dosi et al. (2013) show, in a model of Keynesian and 

Schumpeterian agents that includes banks, that larger loans have positive impacts on 

growth when firms cannot rely on their own resources. Raberto et al. (2012) employ the 

EURACE model and find that lower capital-adequacy ratios can stimulate growth in the 

short-run, whilst, in the long-run, high stocks of private debt can lead to more firm 

bankruptcies, credit rationing and more serious economic downturns. Klimek et al. (2015) 

study alternative resolution mechanisms of banking crises and they find that in period of 

expansions, the best policy to achieve financial and economic stability is closing the 

distressed bank. 

 The works of Poledna et al. (2014) and Aymanns and Farmer (2015) show in an 

ABM that Basel II31 has destabilizing effects by increasing synchronized buying and 

selling activities in view of the need to reduce leverage. There is also a new generation of 

ABMs employed to study the effects of Basel III32 macroprudential regulation and its 

                                                           
31 Basel II is an international regulatory accord from 2004. It is a set of international bank regulations based 

on three main pillars: minimal capital requirements, regulatory supervision and market discipline. Its main 

objective was to increase minimal capital requirements established under Basel I, the first international 

regulatory accord (1988). 
32 Basel III (2009) is part of a continuous effort to enhance the banking regulatory framework. It introduced 

a set of reforms designed to improve the regulation, supervision and risk management within the banking 

sector. Its main idea is to foster greater resilience at the individual level in order to reduce the risk of a 

system-wide shock. 

 



68 
 
 

 
 

 

possible interactions with monetary policy to achieve price and financial stability, e.g., 

Popoyan et al. (2015); Krug et al. (2015);   

According to Fagiolo and Roventini (2017), the modeling of a network structure 

is difficult in DSGE models. As they state, “this lack of consideration has prevented such 

models to explain the emergence, the depth and the diffusion of the current crisis, where 

the topological properties of the credit market network have a fundamental” (Fagiolo and 

Roventini, 2017, p. 21). Taking a complexity theory perspective and combining network 

theory and ABMs is an interesting work that can help to avoid the occurrence of financial 

crises (Battiston et al., 2016). Some works regarding this subject are Gai et al. (2011); 

Krause and Giansante (2012); Gaffeo and Molinari (2016). 

Still within the same theme, Gabbi et al. (2015) develops an ABM with network 

between banks and a real sector to assess the impact of some macroprudential regulations. 

They find that the effect of regulation on banks' performance changes according to the 

state of the economy, the degree of network connection between banks and the volume 

of information about banks' risks.  

 

Labor Market Policy 

Fagiolo and Roventini (2017, p. 22) state that “in DSGE models, labor market is 

not usually modeled, and unemployment is not contemplated. This prevents them to study 

problems related to involuntary unemployment, structural reforms, human capital 

policies, etc.”. The model of Dosi et al. (2016d, 2016e, 2016f) extend the K+S model to 

account for different microfounded labor-market regimes defined by different levels of 

wage flexibilities, labor mobility and institutions. The model is capable of generating 

persistent involuntary unemployment and it accounts for several stylized facts of the labor 

market. The results show that the more rigid labor markets and labor relations are the 

higher productivity and GDP growth will be, whilst leading to lower inequality, 

unemployment and output volatility. Similar results are found in Napoletano et al. (2012) 

and Seppecher (2012).  

In Dawid et al. (2014), it is shown that the effects of policies - such as improving 

workers’ skills and firms’ technological adoption on innovation, commuting flows, 

inequality dynamics and economic convergence – depends on the flexibility of the labor 

markets. 
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As shown above, ABM’s contribution is increasing as the methodology becomes 

more widespread. Albeit the issues regarding this modelling methodology cannot be 

neglected, we believe that a more fruitful development of macroeconomics should take 

into account the basic topics raised by the AB modelers. 

That being said, the main aim of this chapter is to understand how ABMs work. 

For this ultimate achievement, we begin with an introduction that shows the main 

criticisms raised against the DSGE approach. Following that, the ideas behind the agent-

based methodology are presented. Then, the structure of a basic ABM is elaborated. At 

last, the issues of validation and estimation are discussed. 

 

3.1. Background 

 

The 2008 economic crisis has undoubtedly challenged the mainstream approach 

to macroeconomic modelling. In fact, a great number of economists argue that the 

economic crisis has indeed produced a crisis in macroeconomics. One of the main reasons 

for this apparent failure of the standard approach, grounded into the DSGE models, relies 

on the assumptions that the economy is somehow capable of reaching and sustaining an 

equilibrium path. 

However, a different view that the economy is a non-linear, complex and dynamic 

system, which rarely, if ever, reaches equilibrium, may offer a way around. While in a 

linear system, macro level activity amounts to a simple adding up of the micro actions, in 

a non-linear system, something new may emerge (Hamill, L. and Gilbert, N., 2016). In a 

complex system, the whole may constitute something which is more and different than 

the mere aggregation of its constitutive parts. 

The proponents of this methodology argue that an important feature of 

macroeconomic modelling resides in the ability to analyze evolutionary complex system 

like the economic one. For this end, ABMs would be the best methodological instrument, 

as it is appropriate to study complex dynamics as the result of the interaction of 

heterogeneous agents33. The idea that the economy is a complex adaptive system is at the 

heart of the Agent-Based modelling. 

                                                           
33 Notice that one can interpret a representative-agent-model as a degenerate case in which the degree of 

both heterogeneity and interaction is set to zero, which is a situation that reduces holism to reductionism in 

a hypothetical world without networks and coordination problems. 
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On the other hand, Agent-Based modelers usually argue that the capability of 

DSGE models to encompass and explain complex events is very weak: 

 

Mainstream macroeconomic models do not take into consideration that there 

might be two-way interdependencies between individuals and aggregates: 

interacting elements produce aggregate patterns to which those individuals in 

turn react to. This is precisely where the concept of emergence enters the 

picture. […]. While the mathematics required to solve the model [DSGE] may 

at times look tricky and intimidating, conceptually the model is disappointingly 

unrefined: starting from a discounted sum of infinite utilities and an 

intertemporal budget constraint, somewhere you will eventually find a 

marginal rate of substitution equating a relative price, and possibly an 

additional binding constraint that prevents the second-best from being 

achieved. Nothing is said about true heterogeneity in preferences and beliefs; 

the behavior of agents along disequilibrium paths; the net of non-market 

interactions linking agents; the insurgence of intratemporal and intertemporal 

coordination problems; in a nutshell, nothing is said about what really makes 

any macroeconomic system an object worth studying. (Delli Gatti et al., 2011, 

pp. 5-10) 

 

Before moving on to the explanation of ABMs, it seems worthwhile to briefly 

discuss the most relevant logical inconsistencies of the mainstream approach pointed out 

by its critics. 

 

3.2. Logical Inconsistencies of DSGE models 

 

3.2.1. The SDM Theorem 

 

The work of Sonnenschein (1972), Debreu (1974) and Mantel (1974) – henceforth 

the SDM theorem – can be summarized as follows: 

Let the aggregate excess demand function 𝐹(𝑝) – obtained from the aggregation 

of individual excess demands 𝑓(𝑝) – be a mapping from the price index 𝛱 to the 

commodity space 𝑃𝑁.  

Consider that a General Equilibrium is defined as a price vector 𝑝 such 

that 𝐹(𝑝∗) = 0. 

Formally, the theorem states that the properties of the Walrasian aggregate excess-

demand functions  𝐹(⋅) inherited from the individual excess-demand functions 𝑓(⋅), i.e., 

continuity, homogeneity of degree zero, Walras’ Law (the total value of excess-demand 

is zero) and boundary condition (as prices approach zero, demand increases but does not 

go to infinity), are only sufficient to assure existence, but neither the uniqueness nor the 



71 
 
 

 
 

 

local stability of 𝑝∗, unless preferences generating individual demand functions are 

restricted to very implausible cases (like the assumption that all agents in the economy 

have Cobb-Douglas preferences). 

Thus, for a theory which claims to be rooted on general equilibrium, the mere fact 

that general conclusions could only be drawn for specific examples represents a reversal 

of ordinary logic (Delli Gatti et al., 2011). 

 

3.2.2. The Representative Agent Hypothesis 

 

A possible way out of the SDM theorem is founding the analysis on a fictitious 

representative agent. Actually, this assumption has been adopted massively by DSGE 

models. According to this approach, aggregate consumption is analyzed as if it were the 

consumption of a single individual, who is assumed to live forever, while the income and 

substitution effects of the whole economy are restricted to coincide with that of the 

representative agent. Similarly, labor market is usually treated as a single worker and the 

financial market as a single investor. 

Thus, assumptions are made at the aggregate level, without saying anything about 

isolated individuals. In other words, the aggregate economy would behave like a rational 

individual, so that the macro-behavior simply becomes the sum of individuals-behavior 

and the aggregate properties can be detected at the micro-level as well. Even when the 

model allows for some heterogeneity, interactions that are not mediated by the price 

vector are generally ignored and coordination is ruled out by definition (Di Guilmi et al., 

2017). 

 

3.2.3. (In)Computability of General Equilibrium 

 

To prove the existence of a General Equilibrium one must call the Brower’s fix 

point theorem, i. e. by finding a continuous function 𝑔(⋅): Π → Π so that any fix point for 

𝑔(⋅) is also an equilibrium price vector 𝐹(𝑝∗) = 0. 

Suppose we want to find an algorithm, which, starting from any arbitrary price 

vector 𝑝, chooses price sequences to check for 𝑝∗ and halts when it finds it. In other 

words, to find the general equilibrium price vector 𝐹(𝑝∗) = 0 means that halting 

configurations are decidable. 
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However, it violates the undecidability of the halting problem for Turing 

Machines and, therefore, the General Equilibrium solution is incomputable from a 

recursion theoretic view point.34 

 

3.2.4. Price Mechanisms 

 

In a General Equilibrium model all transactions occur at the same equilibrium 

price vector by construction. To achieve this outcome, economic theory has developed 

two mechanisms.  

The first one, which is called the Walras’ assumption, assumes that both buyers 

and sellers adjust (costless) their optimal supplies and demands to prices that are called 

out by a fictitious auctioneer, who keeps doing his job until a price vector which clears 

all markets is found. Only then transactions take place. 

The second mechanism, which is called the Edgeworth’s assumption, considers 

that buyers and sellers sign provisional contracts and are allowed to recontract (costless) 

until a price vector which makes all individual plans fully compatible is found. Once 

again, transactions will occur only after the equilibrium price vector is established. 

No matter which mechanism one adopts, the general equilibrium model is one in 

which the formation of prices precedes the process of exchanges, instead of being the 

result of it. As Arrow (1959) pointed out, real markets work differently and in real time, 

so that the General Equilibrium could not be considered a scientific explanation of real 

economic phenomena. 

 

3.2.5. Money 

 

Introducing money into General Equilibrium models is at best problematic. Notice 

that, in this framework, a monetary trade should be the equilibrium outcome of market 

interactions among optimizing agents, so that no economic agent could decide to 

monetize alone. Moreover, the use of money implies that one individual gives up on 

                                                           
34 Alan Turing proved, back in 1936, that it would be impossible to create a general algorithm to solve the 

halting problem for all possible program-input pairs. Briefly speaking, in computability theory, the halting 

problem determines, from an arbitrary computer program and an input, whether the algorithm will finish 

running or continue forever. A key feature of the proof was a mathematical definition of a computer and 

program: The Turing Machine. The halting problem is undecidable over Turing machines. 
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something valuable (e. g. his endowment or production) for something inherently useless 

(a fiduciary token for which he has no immediate use), expecting to advantageously trade 

it back it in the future. 

However, remember that, in a General Equilibrium model, actual transactions 

occur only after a price vector that coordinates all trading plans has been found (costless). 

So, money can only be consistently introduced if the assumption of the absence of 

transaction costs is abandoned. 

Following the same logic, credit makes sense only if agents can sign contracts in 

which one side promises future delivery of goods or services to the other side. Thus, in 

such models, markets for debts become meaningless; both information conditions and 

information processing requirements are not properly defined, and bankruptcy can be 

safely ignored (Delli Gatti et al., 2011). 

 

3.3. Agent-Based Models 

 

Are there other ways to perform macroeconomic analysis beyond that inspired by 

the DSGE approach? Many economists argue for a positive answer. In general, they 

understand that any economy – and, in particular, large economies composed of millions 

of individual entities – should be described as a complex, adaptive and dynamic system. 

 

3.3.1. Introduction 

 

In the Agent-Based framework, complexity takes place because of the dispersed 

and non-linear interactions between a large number of heterogeneous autonomous agents. 

In this view, aggregates cannot be deduced directly from an examination of the behavior 

of an individual in isolation. Thus, macro-behaviors may emerge from the market and 

non-market interactions, without them being a result of individual intentions.  

According to Gallegati et al. (2017), ABMs allow the construction – based on 

simple evolving rules of behavior and interaction – of models with heterogeneous 

interacting agents, where the resulting aggregate dynamics and empirical regularities (i. 

e., emergent results) are not known ex ante and are not deducible from individual 

behavior. 
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The concept of economy as an evolving complex system is fundamental to this 

approach. Thus, it seems worthwhile to make some remarks. First of all, the term evolving 

means that the system is adaptive through learning. Agents’ behavioral rules are not 

fixed.35 Instead, they constantly change adapting to shifts in the economic environment 

in which they interact. 

Notice that this is very different from its DSGE counterpart. As Gallegati et al. 

(2017, pp. 4-5) say: 

 

[…] the traditional approach, which assumes optimizing agents with rational 

expectations, has been and is a powerful tool for deriving optimal behavioral 

rules that are valid when economic agents have perfect knowledge of their 

objective function, and it is common knowledge that all agents optimize an 

objective function, which is perfectly known unless there are exogenous 

stochastic disturbances. If agents are not able to optimize, or the common 

knowledge property is not satisfied, then the rules derived with the traditional 

approach lose their optimality and become simple rules. Moreover, they are 

fixed, that is, nonadaptive. In an ABM individual adaptive behavioral rules 

evolve according to their past performance: this provides a mechanism for an 

endogenous change of the environment. As a consequence, the “rational 

expectation hypothesis” loses significance. However, agents are still rational 

in the sense that they do what they can in order not to commit systematic errors. 

In this setting, there is still room for policy intervention outside the mainstream 

myth of optimal policies. Because emergent facts are transient phenomena, 

policy recommendations are less certain, and they should be institution and 

historically oriented. 

 

The second explanation refers to the expression complex system. It means that the 

economic system has a high level of heterogeneity, that is, direct and indirect interactions 

that can generate emergent properties that are not inferred from the simple analysis of 

micro-relations. 

This notion of emergence is what characterizes a complex system. In this 

approach, the dynamics of the evolving agents are aggregated regardless the need for 

special conditions for perfect aggregation and an always-in-equilibrium dynamic.  

In fact, when dealing with complex economies, the key driver of evolution is not 

optimization but selection. In large interactive systems like this, individual decision 

processes become adaptive in the sense that agents can “change their mind” during the 

simulation process and often change the rule (Caiani et al., 2016; Delli Gatti et al., 2011). 

                                                           
35 However, it is not illegitimate to build ABMs with fixed rules whenever one wants to understand the 

dynamic of an economic system considering that agents behave in a certain way. 
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As shown in Schelling (1978), maximization behaviors may lead to lower payoffs 

than behaving reciprocally and cooperatively, whenever the enforcement of contracts is 

costly and exchanges happen through face-to-face bargaining. 

The equilibrium of a system in an ABM does not require that all isolated elements 

be in equilibrium as well, but rather that the statistical distributions describing aggregate 

phenomena be stable. In other words, 

 

One of the objectives of an ABM simulation (but not the only one) is to make 

the joint distributions of economic agents converge in a suitable space of 

distributions. Even when fluctuations of agents occur around equilibrium, 

which we could calculate using the standard approach, the ABM analyses 

would not necessarily lead to the same conclusions. This is because the 

characteristics of the fluctuations would depend on higher moments of the joint 

distribution and often on the properties of the tails, or three kurtosis of the 

distribution. (Gallegati et al., 2017, p. 6) 

 

This nonequilibrium dynamics prevents the complexity approach to deal with the 

common practice of closing the models through some exogenous imposition of a general 

equilibrium solution by means of some fixed-point theorems.  

According to Delli Gatti et al., (2011, p. 16): 

 

The introduction of a Walrasian auctioneer inhibits the researcher from 

exploring the real question at stake in macroeconomics, that is, to explain how 

self-interested trading partners happen to coordinate themselves in 

decentralized markets most of the time, but also why from time to time some 

major economic disaster occurs without any apparent external cause. 

Complexity offers a way out of this situation, and it suggests new perspectives. 

Complex adaptive economies display a tendency to self-organize towards 

rather stable aggregate configurations, occasionally punctuated by bursts of 

rapid change. Spontaneous order emerges in the process of individual buying 

and selling transactions taking place in real space and time, without the need 

of any central controller. Adaptive and imitative behaviors give rise to stable 

and predictable aggregate configurations, as stability implies predictability and 

vice versa. Since it is sometimes safer to be wrong in the crowd than to be right 

alone, imbalances can now and then accumulate to the point that a bundle of 

chained bankruptcies becomes inevitable. After the bubble has burst and the 

system has experienced episodes of wild instability, new modes of adaptive 

behavior, technological opportunities and budget constraints co-evolve leading 

the economy towards a new phase of aggregate stability. 

 

In traditional models it is assumed that one has a full characterization of individual 

preferences, that is, that one knows exactly what economic agents want. Payoff and utility 

function existence theorems are derived from this hypothesis, making it possible to 
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represent the preference map of economic agents with scalar objective functions for 

which the maximum value exists. 

In fact, according to Caiani et al. (2016), in traditional models the agents’ 

optimization is a mere consequence of the initial hypothesis that the preference scheme 

of the agents is known a priori.  

Tesfatsion (2006) summarizes it: 

 

Walrasian equilibrium in modern-day form is a precisely formulated set of 

conditions under which feasible allocations of goods and services can be price-

supported in an economic system organized on the basis of decentralized 

markets with private ownership of productive resources. These conditions 

postulate the existence of a finite number of price-taking profit-maximizing 

firms who produce goods and services of known type and quality, a finite 

number of consumers with exogenously determined preferences who 

maximize their utility of consumption taking prices and dividend payments as 

given, and a Walrasian Auctioneer (or equivalent clearinghouse construct) that 

determines prices to ensure each market clears. Assuming consumer 

nonsatiation, the First Welfare Theorem guarantees that every Walrasian 

equilibrium allocation is Pareto efficient. 

The most salient structural characteristic of Walrasian equilibrium is its strong 

dependence on the Walrasian Auctioneer pricing mechanism, a coordination 

device that eliminates the possibility of strategic behavior. All agent 

interactions are passively mediated through payment systems; face-to-face 

personal interactions are not permitted. Prices and dividend payments 

constitute the only links among consumers and firms prior to actual trades. 

Since consumers take prices and dividend payments as given aspects of their 

decision problems, outside of their control, their decision problems reduce to 

simple optimization problems with no perceived dependence on the actions of 

other agents. A similar observation holds for the decision problems faced by 

the price-taking firms. The equilibrium values for the linking price and 

dividend variables are determined by market clearing conditions imposed 

through the Walrasian Auctioneer pricing mechanism; they are not determined 

by the actions of consumers, firms, or any other agency supposed to actually 

reside within the economy. (Tesfatsion, 2006, pp. 175-176) 

 

On the other hand, agent-based approach: 

 

[…] aims to study economic phenomena in their complexity; taking into 

account joint distributions of individual characteristics, the direct and not only 

indirect interactions and therefore the way in which economic networks are 

made and changed. Hence, it cannot assume to be able to perfectly represent 

the preferences and therefore to have an exact knowledge of the objective 

functions. The starting point of each agent-based analysis is a description of 

the rules of behavior, that is, the map between the actions and the information 

set available to them in which a partial knowledge of the objective functions is 

included. These rules can be derived from empirical work, from economic 

experiments, from studies carried out in disciplines other than economics 

(psychology, sociology, etc.) or from a purely normative analysis.” (Caiani et 

al., 2016, p. xiv) 
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Furthermore, as Gallegati et al. (2017) argue, the evolutionary process of 

differentiation, selection, and amplification loads the system with novelty and is 

responsible for its growth in order and complexity. The mainstream approach has no such 

a mechanism to endogenously create novelty or generate growth in order and complexity. 

In their words: 

 

[…] results of the ABM model are new because they take into consideration a 

very important element of economic systems: the networks of direct and 

indirect interactions, which are often extremely complex and not approximated 

by simple graphs such as random graphs. Real economies are composed by 

millions of interacting agents, whose distribution is far from being a simple 

transformation of the “normal” one. (Gallegati et al., 2017, p. 7) 

 

Summarizing, the Agent-Based approach may offer new paths to new and old 

unsolved questions. Of course, it is still in a far too premature stage to offer definitive 

tools, although it has already yielded interesting results, especially when analyzing 

complex situations that are difficult to investigate with DSGE models.  

However, addressing the complex view to macroeconomics requires appropriate 

conceptual and analytical tools. According to Delli Gatti et al. (2011, p. 17): 

 

The abandonment of the Walrasian auctioneer implies that market outcomes 

must be derived from the parallel computations made by a large number of 

interacting, heterogeneous, adaptive individuals, instead of being deduced as a 

fixed-point solution to a system of differential equations. The process of 

removal of externally imposed coordination devices induces a shift from a top-

down perspective towards a bottom-up approach. 

 

In this bottom-up approach, individual behavior is modeled according to simple 

behavioral rules and agents are allowed to have local interaction and to change the 

individual rule (through adaptation) as well as the interaction nodes. Aggregation allows 

the emergence of some statistical regularity, which cannot be inferred from individual 

behavior (self-emerging regularities). This emergent behavior feeds back to the 

individual level (downward causation) thus establishing a macrofoundation of micro 

(Colander, 1996).  The Agent-Based approach aims precisely to describe, in a reduced 

scale, the behavior of single individuals and bring out the aggregate properties (Caiani et 

al., 2016). 
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Consequently, each and every proposition can be falsified at micro, meso and 

macro levels. The distance between the Agent-Based approach and the DSGE one is large. 

According to Caiani et al. (2016, Introduction, p. xvi): 

  

In an ABM, the interactions are governed by rules of behavior that the modeller 

codifies directly in the individuals who populate the environment. In an ABM, 

the behavior is the point in which a modeller begins to make hypothesis. The 

DSGE modelers make assumptions about what an optimizing agent wants, 

compatibly with budget and resource constraints, and represent these wishes 

with concave real-valued functions defined over convex sets. Based on the 

combination of objectives and constraints, the behavior is derived by solving 

the first-order conditions and when necessary also the second-order conditions. 

The reason why economists set their theories in this way - making assumptions 

about the goals and then drawing conclusions about the behavior - is that they 

assume that the allocations, decisions and choices are guided by individual 

interests. Decisions and actions are carried out with the aim of reaching a max-

min goal. For consumers, this usually regards utility maximization; a purely 

subjective assessment of well-being. For businesses, the goal is typically to 

maximize profits. This is exactly where rationality, for DSGE, is manifested 

in economics. In a nutshell, in DSGE models the modeller sets the objective 

function and the consequent maximization generates the rules. In the ABM the 

modeller sets directly the behavioral rules given empirical evidence and 

experiments that should control the degrees of freedom. 

 

After our effort to systematically introduce the Agent-Based approach, we shall 

now move forward in our way to understand ABMs by exploring their main features, so 

that we can start to work on their common structure, as well as the issues of empirical 

validation and estimation of ABMs. 

 

3.3.2. Main Features of ABMs 

 

The basic units of ABMs are the “agents”. In a nutshell, they are called agents 

because they are autonomous objects36 which interact with each other and with the 

environment. In economics, agents can involve anything from individuals to more 

sophisticated units, such as social groups (e. g., families and firms). Agents can also be 

more complicated organizations, like banks, industries or even countries. Lastly, agents 

can be composed by other agents, as long as they are perceived as a unit from the outside 

and actually do something, having the ability to act and possibly react to external impulses 

and interact with the environment and with other agents. 

                                                           
36 By autonomous objects we mean that no central control is required to ensure the system’s dynamics, that 

is, there is no top-down control over individual’s behavior.  
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Regarding the environment, it may include physical entities (like infrastructures, 

geographical locations, etc.) and institutions (like markets, regulatory systems, etc.). It 

can also be modeled as if it were an agent (e. g., a central bank), whenever the above 

conditions are satisfied. If not, 

 

[…] it should be thought of simply as a set of variables (say “weather” or 

“business confidence”) characterizing the system as a whole or one of its parts. 

These variables may be common knowledge among the agents or 

communicated throughout the system by some specific agent – say the 

statistical office – at specific times. […] it should be clear that aggregate 

variables like consumption, savings, investment and disposable income, which 

are the prime units of analysis of Keynesian macroeconomics, cannot be 

modeled as agents in an Agent-Based framework as they are computed by 

aggregating microeconomic agent quantities; the same applies to the fictitious 

representation of a representative agent, a cornerstone of neoclassical 

economics. […]. The direct modelling of a demand or a supply curve is also 

forbidden in an agent-based setting: rather, these aggregate functions may (or 

may not) emerge as the outcome of the decisions of the individual agents. 

(Richiardi, 2018a, p. 11) 

 

In short, according to the Agent-Based literature, we can summarize the ABM 

fundamental characteristics into three main tenets. The first is that there is a multitude of 

objects that interact with one another and also with the environment. The second is that 

the objects are autonomous, as previously explained. The third is that the outcome of their 

interaction is numerically computed. 

In fact, ABMs may have other characterizing features. According to Epstein 

(2006), we can list the following key-elements: heterogeneity, explicit space, local 

interactions, bounded rationality, and nonequilibrium dynamics. Let us briefly explain 

each one. 

 

3.3.2.1.  Heterogeneity 

 

Agents are explicitly modeled and can differ one from another. While in analytical 

models the reduction in the ways individuals can differ can be a big advantage, in ABMs 

– due to computational developments – it is possible to specify different values of the 

parameters (e. g. preferences, endowments, location, social contacts, abilities, etc.) for 

different individuals. Normally, this is done by choosing a suitable distribution for each 

relevant parameter, so that a limited number of parameters (those generating the 

distribution) are added to the model. 
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3.3.2.2.  Explicit Space 

 

This can be seen as a specification of the previous point. The space in which units 

act and interact is explicitly modeled, i. e., individuals often differ in the physical place 

where they are located, and/or in the neighbors with whom they are allowed to interact. 

It defines the network structure of the model and the concepts of local and neighborhood. 

 

3.3.2.3.  Local Interactions 

 

Again, this can be seen as a specification of the network structure linking the 

agents. The actions of the agents are local since they do not interact with the totality of 

the system, but only with their neighbors, which may be referred to their spatial, 

economic, or social position. Analytical models often assume either global interaction (as 

in Walrasian markets), or very simple local (e. g., 2x2) interaction arrangements. ABMs 

allow for much richer interaction specifications. 

 

3.3.2.4.  Bounded Rationality 

 

In models based on general equilibrium solutions, it is usually easier to implement 

some form of optimal behavior rather than solving models where individuals base their 

decisions on reasonable rules of thumb or learn from the experience of others. In ABMs, 

bounded rationality37 enters the scene because agents base their decisions on simple 

heuristics based on local information, since they are not endowed either with perfect 

information of the functioning of the system where they live or with infinite computing 

capacity to process all the available information. 38 

                                                           
37 According to Russo et al. (2018, p. 108), “bounded rationality can be considered an alternative behavioral 

paradigm for economic agents, as opposed to the neoclassical hypothesis of constrained maximization. 

Indeed, in a complex environment in which information is limited and incomplete, the behavior of agents 

tends to be based on heuristics, that is, relatively simple rules of decisions that agents use to try to reach a 

satisfying choice. Moreover, agents may learn from their behavior and from the interaction with other 

agents and the environment. When we consider the economy as a whole, we must consider that agents can 

directly interact with other agents when taking decisions or learning about the working of the economy. 

The interaction of heterogeneous agents can lead to complex dynamics at the level of the whole system. 

For this reason, the macro level can be different from the simple sum of micro entities.”  
38 Even in cases where limited information is taken into account, the mainstream approach faces big 

challenges. See Delli Gatti et al. (2011, p. 21): “According to the mainstream approach, information is 

complete and free for all the agents. Note that one of the key assumptions in the Walrasian tradition is that 
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3.3.2.5.  Nonequilibrium Dynamics 

 

General equilibrium models assume continuous market clearing, so that every out-

of-equilibrium dynamics is discarded from the beginning, and initial conditions do not 

matter. On the other hand, in ABMs, equilibrium is not treated as a natural state of the 

system. From an analytical viewpoint, the latter are recursive (stochastic) dynamic 

models39, in which the state of the system at time 𝑡 + 1 is computed (or probabilistically 

evaluated) starting from the state at time 𝑡. Nonequilibrium dynamics are of central 

concern. In many cases, model dynamics are not ergodic because the initial conditions 

and path dependency matter. Thus, they allow the investigation of what happens all along 

the route, not only at the start and at the end of the journey. Therefore, they allow system 

analysis in which equilibrium may not even exist. 

 

3.3.3. The Structure of a Basic ABM 

 

In what follows, we intend to provide a basic manageable theoretical formalism 

for ABMs, based on the works of Delli Gatti et al. (2011) and Richiardi (2018a; 2018b). 

Briefly speaking, ABMs almost always follow a standard approach. First, they are 

initialized with parameters which define the starting situation. Then, the model is 

executed to simulate the passage of time. Each step represents a shot time duration (e. g. 

a day) at which each agent performs some action (or simply does nothing), according to 

his behavioral rules. Finally, interaction takes place and may include a lot of things, such 

as communicating with other agents, changing or moving through the environment, etc. 

                                                           
any strategic behavior is ruled out, and the collection of the whole set of the information is left to the market 

via the auctioneer. In fact, one could read the rational expectation “revolution” as an attempt at 

decentralizing the price setting procedure by defenestrating the auctioneer. Limited information is now 

taken into account, but the constraints have to affect every agent in the same way (the so-called Lucas’ 

islands hypothesis), while the Greenwald-Stiglitz theorem (Greenwald and Stiglitz [1986]) states that in 

this case the equilibrium is not even Pareto-constrained. If information is asymmetric or private, agents 

have to be heterogeneous and direct interaction has to be considered: this simple fact destroys the efficiency 

property of mainstream model and generates coordination failures. On the contrary, ABMs are built upon 

the hypothesis that agents have limited information and learn through experience and by interacting with 

other agents.” 
39 A discussion about recursive systems is beyond the scope of this work. For our purposes, it is enough to 

say that a recursive system is one in which the output is somehow dependent on one or more of its past 

outputs. See Delli Gatti et al. (2018, pp. 33-42) for a detailed explanation. 
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The program keeps running, step by step, until either some programmed halting 

condition is met or the modeler stops the simulation manually. While the program is in 

execution, the outcomes of agents’ interactions can be measured on graphs or monitors.40 

 

3.3.3.1.  Setting the Stage 

 

In order to turn the complexity of the real world into manageable theoretical 

frameworks, scientists usually abstract some of the characteristics of the particular 

elements they observe and group them into “classes”. 

 

Assumption 1: The starting point of our analysis is a methodological assumption 

according to which any economic system consists of “classes”. Each class contain a very 

large number 𝑵 of agents (objects) who are heterogeneous according to a certain number 

𝒏 of different criteria (attributes).41 

 

An example makes it clearer. Consider an economy in which there are three 

classes: firms, households and banks. Firms are units that use their productive inputs to 

produce final goods, choosing quantities and prices. Objects that belong to the class 

“firms” are characterized by 𝑛 = 3 different attributes: heterogeneity of size, financial 

condition, and technology. Objects of the class “households” (units which offer labor, 

consume goods and save precautionally)  are characterized by 𝑛 = 3 attributes: different 

employment status, labor income, and savings. Finally, objects belonging to the class of 

banks (units which provide funds) are characterized by 𝑛 = 1 attribute: different internal 

financial conditions. 

                                                           
40 Certainly, one can simply use an ABM that has already been developed. However, it is much more 

interesting to understand the program code that is making the model works. Fortunately, advances in 

programming languages and more friendly interfaces have made programming accessible to those without 

expert knowledge. See Hamill and Gilbert (2016) for a very elucidative tutorial on how to build a simple 

ABM using a software called NetLogo. 
41 According to Delli Gatti et al. (2011, p. 30), “in formal terms, an object is an algorithmic description (in 

our case, lines of software code inside a larger computer program) of a purposive entity with some 

identifiable and specialized features. Each object contains a list of attributes and a set of methods acting on 

these attributes. An object can control the mode of external access to its attributes and methods, by declaring 

them public (accessible to all), private (inaccessible to all) or protected (accessible only to some other 

objects). A class is then defined as a template or blueprint for the instantiation of objects sharing those 

common but peculiar features.” 
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Summarizing, the first stage is to classify agents in general types, allowing for 

substantial heterogeneity of individual characteristics. 42 

However, models can easily become unmanageable as heterogeneity takes place. 

For instance, imagine a situation where both the criteria and the types asymptotically tend 

to infinity (i. e., 𝑛 → ∞ and 𝑁 → ∞). Clearly, pushing heterogeneity of objects and 

attributes to these limits is neither useful nor realistic. Dealing with the issue of finiteness 

is therefore fundamental for the usefulness of models. 

In fact, there is no compelling reason to propose and follow a particular rule in 

picking up finite values of 𝑛 and 𝑁 inside the infinite set of integers. However, the 

preference is models with a relative small 𝑛 (but 𝑛 ≫ 1) and a relative large 𝑁, that is, 

models with many types of agents but a relatively small set of criteria to classify agents 

by type. This choice is dictated by the preference for realism in a relatively simple and 

manageable setting. 

But how small should 𝑛 be? This is actually a matter of convenience that depends 

on what the modeler wants to analyze. For instance, suppose that the core of the analysis 

is the long-run growth. Thus, heterogeneity in technology adoption becomes essential. 

And how large should 𝑁 be? Preferentially the largest possible, subject to the 

constraints of computational power. However, sometimes it is not needed to specify a 

particular class of agents in a very detailed way. There are situations where a binary 

choice may be enough, by recurring to the presence or absence of some qualitative 

features (e. g., employed/unemployed). 

 

3.3.3.2.  Rules of Behavior 

 

Once classes and agents are created, the modeler needs to specify the agent’s rule 

of behavior, that it, how agents are allowed to process information, and to act 

consequently. 

 

                                                           
42 This is not exactly a novelty of macroeconomic models. In fact, in the Overlapping Generations (OLG) 

framework, agents differ because of their age. They can either be young or old. This is a simple example 

where there is 𝑛 = 1 criterion of classification and there are 𝑁 = 2 types of agents. According to Delli 

Gatti et al. (2011, p. 30), “of course there can be many agents in any generation, but they are ultimately 

uniform. Each young (old) is a clone of any other young (old). Therefore, despite the appearance of a very 

large number of agent, the model boils down to only two of them”. 
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Assumption 2: Agents are characterized by simple behavioral rules (methods 

acting on attributes), that is, stylized (algorithmic) patterns of economic behavior. Each 

agent may follow different – say, 𝜈 – rules due to different circumstances, i.e. different 

time periods, geographical areas, markets, and so on. 

 

These rules may or may not be the outcome of an optimizing process. But notice 

that optimization yields the smallest possible set of rules. The optimal behavior will be 

the only one behavior the agent can rationally follow because of the fully specification 

that is required for any optimization procedure (i. e., objective functions, constraints, and 

information sets). In symbols, that situation yields 𝜈 = 1. 

However, once we choose to get rid of optimization, we can easily get lost in the 

wilderness of behavioral rules, as there are no constraints on the number of behavioral 

rules one can use. The borderline situation, where 𝜈 → ∞, would push heterogeneity to 

the limit where the model would become easily unmanageable. 

In fact, agent-based modelers prefer models with a relatively small 𝜈. In other 

words, the preference is for models with many types of agents but a relatively small set 

of behaviors for each class of agents. This preference is based on realism and 

manageability. Indeed, it is very unlikely that agents are so sophisticated to adopt a large 

number of different behavioral rules. It is much more reasonable to assume a relatively 

small 𝜈. 

The choice of the behavioral rule can be done according to the empirical literature, 

or – when possible – by simply asking people (survey studies). When there is no clue 

coming from the empirical literature, the common choice is to run the model with several 

behavioral rules and to compare them in terms of how good they are in generating results 

fitable into the available empirical evidences. According to Delli Gatti et al. (2011), the 

rule that comes first in its ability to reproduce stylized facts is the one to be adopted. 

At a very broad level, as Catullo et al. (2016) argues, what is important for the 

choice of an economic agent is his/her information set or state at time 𝑡. 
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Assume that the information set at time 𝑡 is given by: 

 

Ω𝑖,𝑡 = (𝑥𝑖,𝑡, 𝑒𝑖,𝑡, 𝑛𝑖,𝑡) 

where 𝑥𝑖,𝑡 is a vector that collects individual characteristics (e. g. preferences, technology, 

etc.); 𝑒𝑖,𝑡 is a vector of external signs (e. g. knowledge of the market in which they operate, 

etc.); and 𝑛𝑖,𝑡 is the neighborhood of agent 𝑖 that one observes. All the variable are 

predetermined, i. e., observable variables at time 𝑡 of the agent’s choice. 

 

Define a rule as an action/choice given the state/information set at time 𝑡. Also, 

consider the fact that agents behave rationally in the sense that they learn from their 

mistakes (i. e., rules have a feedback structure). 

As in ABMs the environment is complex, becoming it difficult to find an optimal 

rule, the use of micro and experimental evidence with some reinforcement mechanism is 

needed. This notion of rationality is better specified by using the definition of constructive 

rationality, as in Tesfatsion (2016). According to this definition, there is constructive 

rationality when the action/rule of an agent can be expressed as a function of the state at 

time 𝑡, that is, when in the state there are consideration of future events, those have to 

enter as anticipations (i. e., function of the state at time 𝑡). 

A behavioral rule is then a relationship between an action (i.e., a specific level of 

a control or decision variable) and the levels of the state variables that characterize the 

agent. Let us make it clearer by presenting some formalization. 

Suppose, for simplicity, that there are 𝒌 control variables and 𝝈 state variable for 

each agent. Let underscores denote vectors, so that 𝑪 𝒊,𝒕 is the (𝒌, 𝟏) vector of control 

variables available to agent 𝒊 in period 𝑡 and 𝑺 𝒊,𝒕 is the (𝝈, 𝟏) vector of state variables 

which characterize the agent in the same period. 

Notice that since the current action is likely to affect the state in the same period, 

logically, it will be affected by the state of the agent in the past. Hence, the simplest 

conceivable formulation for a behavioral rule is: 

 

 𝐶 𝑖,𝑡 = 𝐶𝑖(𝑆 𝑖,𝑡−1) (112) 
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However, the action in period 𝑡 will contribute to the current state of the agent and 

therefore to the future action that the agent will take. Hence, 

 

 𝑆 𝑖,𝑡 = 𝐹𝑖(𝑆 𝑖,𝑡−1, 𝐶 𝑖,𝑡) = 𝐹𝑖(𝑆 𝑖,𝑡−1, 𝐶 𝑖(𝑆 𝑖,𝑡−1)) (113) 

 

The equation above represents the general law of motion of the state variables 

which rule the evolution over time of the features characterizing the individual agent. It 

is a 𝜎-dimensional generally non-linear dynamical system, which maps the overall state 

of the agent in 𝑡 (𝑆 𝑖,𝑡). Indeed, there are 𝑁 different dynamical laws, one for each agent. 

Therefore, the evolution over time of the macroeconomy is described by a system of 𝑁 ×

𝜎 difference equations.  

By construction, this system is so far composed by unrelated equations, since each 

individual’s behavioral is considered as isolated from the others. In other words, each 

agent is evolving in isolation. Of course, it is unrealistic to conceive an economy like that. 

So, we have to move one step further in the direction of modelling economic behavior in 

a fully integrated macroeconomic system by taking into account the fundamental role of 

interaction. 

 

3.3.3.3.  Interaction 

 

In order to introduce the issue of social interactions in the simplest way, we shall 

assume the following: 

 

Assumption 3: The actions of the agent 𝐶 𝑖,𝑡 in 𝑡 are affected by the collective 

actions of other agents in the past. 

 

To capture it, we will use the vector of some summary statistics (e. g. the average) 

of cross-sectional control variables, 𝐸 𝑡−1. Following Delli Gatti et al. (2011), we will 

assume that individual control variables are not affected by other agents’ individual 

actions in a strategic framework. It means that, on the one hand, the 𝑖𝑡ℎ agent is indeed 

affected by the population consisting of the 𝑁 − 1 remaining agents (with 𝑁 large 

enough, so that the contribution of agent 𝑖 to the aggregate becomes negligible) and he/she 
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may be also aware of this influence, but he/she is not intentionally “playing” a game 

against each of the other individuals. On the other hand, agent 𝑖 is surely contributing to 

shape the state of the 𝑗𝑡ℎ agent, but only as one tiny component of an aggregate that is 

meant to describe the colletive behavior of the population at large. 

With this assumption, reformulating (112) gives us: 

 

 𝐶 𝑖,𝑡 = 𝐶𝑖(𝑆 𝑖,𝑡−1, 𝐸 𝑡−1) (114) 

 

Therefore, equation (113) must be “augmented” as follows: 

 

 𝑆 𝑖,𝑡 = 𝐹𝑖(𝑆 𝑖,𝑡−1, 𝐶 𝑖,𝑡) = 𝐹𝑖(𝑆 𝑖,𝑡−1, 𝐶 𝑖(𝑆 𝑖,𝑡−1, 𝐸 𝑡−1)) 

 

(115) 

Notice that the presence of the vector 𝐸 𝑡−1 in the expression above captures the 

idea that the state of the individual is affected by an average of all the actions taken by all 

other agents.  

Equation (115) represents the law of motion of the state variables which govern 

the evolution of the characteristics of each individual agent. Notice that, by construction, 

now the system is not strictly individual. In other words, each agent’s state is evolving 

over time considering not only his own past states, but also the average state of the 

economy, represented by 𝐸 𝑡−1. 

 

3.3.4. Obtaining Results in ABMs 

 

With the above explanations and following the formalism of Richiardi (2018b), 

we will offer a formal characterization of ABMs and analyze how they can give us 

satisfactory results. 

First, assume that, at each time 𝑡, an agent 𝑖 ∶ 𝑖 ∈ 1,… , 𝑛 , is fully described by 

some state variables 𝜎𝑖,𝑡 ∈ ℜ
𝑘. Let his/her state variables evolve by the following 

difference equation: 

 

 𝜎𝑖,𝑡+1 = 𝑓𝑖(𝜎𝑖,𝑡, 𝜎−𝑖,𝑡, 𝜃𝑖 , 𝜉𝑖,𝑡) (116) 
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where  𝜉𝑖,𝑡 are stochastic terms, and 𝜃𝑖 ∈ Θ is a vector of parameters, with Θ being a 

compact subset of ℜ𝑄.  

 

The behavioral rules may be individual-specific both in the functional form 𝑓𝑖(⋅) 

and in the parameters 𝜃𝑖, and may also depend on the state 𝜎−𝑖 of all agents other than 𝑖. 

The set of structural equations (116), defined at the individual level, defines the data-

generating process (DGP) of the model. 

At any point in time, the system is in a state X𝑡 = (𝜎𝑖,𝑡) which is the matrix of all 

individuals states. By replacing (116) in the definition above, we obtain: 

 

 𝑋𝑡+1 = 𝐹(𝑋𝑡, 𝜃, Ξ𝑡) (117) 

where  Ξ𝑡 is a matrix which contains all stochastic elements at time 𝑡. 

 

Equation (117) defines the transition equation of the system. Note that, in optimal 

control, there is a distinction between state and control variables, i. e., the latter are 

subject to the optimizer’s choice and have influence on the value of the state variable of 

interest. Contrariwise, in ABMs there is no need to distinguish between them, as agents 

do not really engage in mathematical optimization. So, we can simply refer to both state 

and control variables as state variables 𝑥𝑖 = [𝜎𝑖, 𝑘𝑖]. Each individual variable evolves 

according to a certain rule, or law of motion 𝑓𝑖. 

In order to investigate some aggregate (observable) statistics of the economy, we 

shall define a vector of aggregate variables 𝑦𝑡 as a function over the state of the system, 

that is, a projection from 𝑋 to 𝑦: 

 

 𝑦𝑡 = 𝑚(𝑋𝑡, 𝑒𝑡) (118) 

where  𝑒𝑡 represents extra random terms that account for measurement errors and other 

shocks to the observables, if any. 

 

Equation (118) is the measurement equation. The state-space representation of 

the system is formed by equations (118) and (117). To solve equation (118) for each 𝑡, 

regardless of the specification of 𝑓𝑖(⋅), we need to use backward iteration, i. e., to trace 
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the stochastic evolution 𝑦𝑡 back to the initial state of the system and the values of the 

parameters. 

Expliciting this relationship is difficult because of the random terms Ξ and 𝑒 that 

enter at every stage. As the behavioral rules 𝑓𝑖 and the measurement function (118) do 

not need to be linear, these random terms cannot be netted out by taking expectations.  

The only way to investigate the mapping of (𝑋0, 𝜃) into 𝑦𝑡 is by means of Monte 

Carlo analysis, i. e., by simulating the model for different initial states and values of the 

parameters, and repeating each simulation over and over again until the obtainment of the 

distribution of 𝑦𝑡. 

To go further into the explanation, we can think about how the model simulation 

works on a digital computer. Because digital computers are deterministic machines, 

random terms are not truly random, that is, they are generated by an algorithm which 

produces sequence of numbers that resemble the properties of random numbers. This 

sequence is called pseudo-random and the algorithm is referred to as random number 

generation. Each sequence is identified by a seed, which is often called random seed. 

Specifying the random seed guarantees the reproducibility of the results. 

Therefore, the random terms Ξ and 𝑒 are a deterministic function of the random 

seed 𝑠, and equations (117) and (118) become: 

 

 𝑋𝑡+1 = 𝐹(𝑋𝑡, 𝜃, 𝑠) (119) 

 

 𝑦𝑡 = 𝑚(𝑋𝑡, 𝑠) (120) 

 

The random seed can be thought of as a further initial condition: 𝑍0 = (𝑋0, 𝑠). By 

iteratively substituting 𝑋𝑡+1 with 𝑋𝑡 using equation (119), we get: 

 

 𝑋𝑡 = 𝐹(𝐹(…𝐹(𝑍0, 𝜃) … ))  

 𝑋𝑡 = 𝐹
𝑡(𝑍0, 𝜃) (121) 

 

 𝑦𝑡 = 𝑚(𝐹
𝑡(𝑍0, 𝜃))  

 𝑦𝑡 = 𝑔𝑡(𝑍0, 𝜃) (122) 
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Notice that the law of motion (122) uniquely relates the value of 𝑦 - at any time 𝑡 

- to the initial conditions of the system 𝑍0 and to the values of the parameters 𝜃. Equation 

(122) is known as the input-output transformation (IOT) function.43 This equation is the 

basic object of interest to yield results in an agent-based approach. 

Moreover, notice that (122) completely satisfied, so that it is possible to explore 

their local behavior by analyzing the artificial time series produced by the simulation 

(Richiardi, 2018b). Because the IOT function has no analytical formulation, it has to be 

analyzed by computer simulations. 

 

3.3.5. Empirical Validation of ABMs 

 

Broadly speaking, the validation process involves a judgement over the quality of 

the model. However, it is not a trivial process. First of all, it is important to say that no 

model exists without an underlying theory. So, a model can be good (adequate) from a 

point of view, and bad (inadequate) from another one. Moreover, model validation can 

be defined along two dimensions.  

A first dimension is the validation of the model relative to the theory, that is, 

whether the model is consistent with the theory on which it relies on. This is called 

concept validation. When applied to computational models, the concept validation 

requires an additional level of validation – the program validation – i. e., the validation 

of the code that simulates the model (relative to the model itself). 

The second dimension is the validation of the model against real data. This 

procedure is called empirical validation. The aim of this section is to introduce the main 

techniques of empirical validation of ABMs in economics. 

In a nutshell, empirical validation may concern the model inputs and/or outputs. 

The input validation refers to the realism of the assumptions, whilst the output validation 

investigate the plausibility of the data generated by the model, that is, whether the model 

delivers output data that resembles, somehow, real-world observations. 

As we shall notice, input and output validations are connected, as the latter 

represents a joint test on the structure of the model and the values of parameters. As a 

                                                           
43 The word “function” is appropriated here. Note that for any given input, the computer model will give 

only one output (though, different inputs might lead to the same output). 
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matter of fact, output validation can be applied to refine the parameters of the model. This 

procedure is called calibration or estimation44 (Fagiolo and Richiardi, 2018). 

 

3.3.5.1.  Input Validation of ABMs 

 

Validating the inputs of an ABM consists of checking whether the building blocks 

of the model and its assumptions are in line with the available evidence. Although input 

validation in an important step in model building, so far no explicit technique has been 

proposed to perform such a task in a formal and consistent way (Fagiolo and Richiardi, 

2018). 

In fact, any practice that intends to ensure that the fundamental conditions added 

into the model resemble aspects of the real life is doomed to face the issue of input 

validation. Here, we will consider input validation as a practice to ensure that the 

fundamental, structural, behavioral, and institutional conditions (i. e., assumptions about 

the rules of behavior and interaction) incorporated into the model are in tune with what is 

observed in the reality. According to Delli Gatti et al. (2011), input validation can be 

interpreted as an ex-ante validation (i. e., the researcher tries to introduce the correct 

parameters in the model before actually running it).  

The information for input validation can be gathered from lab experiments, case 

studies, and actual empirical data collected at the micro level, for instance.45 

 

3.3.5.2.  Output Validation of ABMs 

 

Indeed, the debate on ABMs validation is still very open and a new wave of 

approaches to empirical validation has recently flowered in the agent-based literature 

(Fagiolo et al., 2017). According to Windrum et al. (2007), the issue of empirical 

validation of AB models depends two factors: a) ABMs invariably contain non-linearities, 

stochastic dynamics, non-trivial interaction structures among economic agents, and 

micro-macro feedback which open up a whole set of methodological problems associated 

                                                           
44 Although we are using calibration and estimation as synonyms, there are differences in the two practices, 

as we will show in section 3.3.6. 
45 See Hommes and Lux (2013) for the use of lab experiments. Also, see Cirillo et al. (2007) for the use of 

empirical data. 
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to the relations between the “real-world data generating process” (rwDGP) and the 

“model data generating process” (mDGP)46; b) heterogeneity in empirical validation 

procedures might also be due to the lack of standard techniques for crafting and analyzing 

ABMs. The reasons often pointed out for the lack of standard protocols are partly due to 

the high level of heterogeneity characterizing the process of constructing and analyzing 

ABMs. Moreover, there is no consensus about how - and if - ABMs should be validated47. 

In fact, a number of ABMs mostly engage in purely qualitative theorizing and are 

not empirically validated in any meaningful sense (Fagiolo and Richiardi, 2018). In other 

words, most ABM efforts do not go beyond a proof of concept, with no rigorously tests 

using empirical data (Janssen and Ostrom, 2006). The focus of such models is the analysis 

of qualitative aggregate patterns (e. g. the emergence of coordination and cooperation). 

Although forecast exercises are possible, they usually yield unpredictability. Thus, these 

models are not frequently “taken to the data”.48 

When the model is suited for empirical validation, output validation becomes a 

tool for the comparison of instances of the model with different parameter values and a 

choice of the one that better “fits the data”. Agent-based modelers almost never intend to 

estimate or calibrate a model using a unique optimal choice for all the parameters. Rather, 

they look for confidence intervals or ranges of the relevant parameters. When the goal is 

more descriptive, they rather aim at identifying a reasonable and relatively small subset 

of the parameter space where counterfactual types of questions can be asked (Fagiolo and 

Richiardi, 2018). 

The calibration/estimation of ABMs tries to deal with the problem of 

overparametrization by reducing the space of possible sets to be explored. This is done 

by using empirical data. Indeed, there are different approaches used in the agent-based 

literature to deal with this issue, but they all attempt to restrict the parameters so that the 

model outputs resemble the real output of interest as closely as possible. 

                                                           
46 It is required that the mDGP be simpler than the rwDGP and – in simulation models – the mDGP must 

generates a set of simulated outputs. The extent to which the mDGP is a good representation of the rwDGP 

is evaluated by comparing the simulated outputs of the mDGP with the real-world observations of the 

rwDGP. 
47 Some researchers engaged in qualitative modeling are critical of the suggestion that meaningful empirical 

validation is possible at all (see Valente, 2014). 
48 However, sometimes appropriate extensions/modifications of qualitative models can be empirically 

tested. 
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There are approaches that are mostly qualitative and those which rely on 

quantitative methods to estimate/calibrate the parameters. The latter try to identify the 

most-likely parameters ranges based on observed qualitative similarities between the real 

world and the model outcomes.  

In the next section we will briefly review some of the most-used qualitative 

calibration techniques, whereas in the last section we will deal with some of the most 

promising quantitative approaches. 

 

3.3.5.2.1. Qualitative Output Validation Techniques 

 

3.3.5.2.1.1. The Indirect Calibration Approach 

 

Drawing upon a combination of stylized facts and empirical datasets, the Indirect 

Calibration is a pragmatic four-step approach to empirical validation. As its name 

suggests, one must first perform validation, and then indirectly calibrates the model by 

focusing on the parametrization that are consistent with output validation. In what 

follows, we give a briefly description of the four steps. 

In the first step, the modeler identifies a set of stylized facts49 that concerns his 

interest in reproducing and/or explaining with a model. In the second step - along with 

the prescriptions of the empirical calibration procedure – the researcher builds the model 

in a way that the microeconomic description keeps as close as possible to empirical and 

experimental evidences concerning microeconomic behavior and interactions. This step 

implies collecting all possible evidences about the underlying principles that apprise real-

world behaviors so that the microeconomic level is modeled in a “not-too-realistic 

fashion” (Windrum et al., 2007). 

The third step involves restricting the space of parameters by using the empirical 

evidence on stylized facts (and also restricting the initial conditions, if the model turns 

                                                           
49 Stylized facts typically concern the macro-level (e.g., the relationship between unemployment and GDP 

growth) but can also be related with cross-sectional regularities (e.g., the shape of the distributions on firm 

size) (Windrum et al., 2007). According to Fagiolo and Richiardi (2018, p. 173), “by emphasizing the 

reproduction (explanation) of a set of stylized facts, one hopes to circumvent problems of data availability 

and reliability. However, in order for empirical validation to be effective, the stylized facts of interest should 

not be too stylized, or too general. Otherwise, they might not necessarily represent a difficult test for the 

model: the model might pass the validation procedure without providing any effective explanation of the 

phenomena of interest.” 
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out to be non-ergodic). This step is the most sensible as it implies a fine sampling of the 

parameter space. In fact, it is an exercise in “indirect calibration”. It is also 

computationally demanding and requires the use of Monte Carlo techniques. 

The fourth and last step is where the researcher should deepen his understanding 

of the causal mechanisms that underlie the stylized facts under scrutiny and/or explore 

the emergence of new stylized facts – i.e. statistical regularities that are different to the 

stylized facts of interest – which the model can validate ex post. This procedure might be 

done by further investigation of the subspace of parameters that resist to the third step, 

that is, those consistent with the stylized facts of interest. 

The underlying goal of the indirect calibration approach is to investigate whether 

the model is able to reproduce jointly a wide range of macroeconomic and microeconomic 

stylized facts. If the model successfully matches empirical regularities concerning 

industrial dynamics as well as more structural relations between macroeconomic 

aggregates, this ought to be taken as a robust empirical validation (Fagiolo and Windrum, 

2007; Fagiolo and Roventini, 2012, 2017; Fagiolo et al., 2017), offering plausibility to its 

use as a “computational laboratory” to test different policy experiments. 

 

3.3.5.2.1.2. The History-Friendly Approach 

 

This approach offers an alternative to the problem of overparametrization, by 

bringing modelling more closely in line with the empirical evidence. Notice that it is very 

similar to the indirect calibration discussed above. The key difference is that this approach 

uses the specific case study of an industry to model parameters, agent’s interactions, and 

agent’s decision rules. In other words, it is a calibration approach that uses particular 

historical features as a type of model calibration.  

The working process of this approach is perfectly described in Windrum et al. 

(2007, p. 22): 

 

Through the construction of industry-based AB models, detailed empirical data 

on an industry inform the agent-based researcher in model building, analysis 

and validation. Models are to be built upon a range of available data, from 

detailed empirical studies to anecdotal evidence to histories written about the 

industry under study. This range of data are used to assist model building and 

validation. It should guide the specification of agents (their behavior, decision 

rules, and interactions), and the environment in which they operate. The data 

should also assist the identification of initial conditions and parameters on key 
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variables likely to generate the observed history. Finally, the data are to be used 

to empirically validate the model by comparing its output (the `simulated trace 

history') with the `actual' history of the industry. It is the latter that truly 

distinguishes the history-friendly approach from other approaches. Previous 

researchers have used historical case studies to guide the specification of 

agents and environment, and to identify possible key parameters. The authors 

of the history-friendly approach suggest that, through a process of backward 

induction one can arrive at the correct set of structural assumptions, parameter 

settings, and initial conditions. Having identified the correct set of ‘history-

replicating parameters’, one can carry on and conduct sensitivity analysis to 

establish whether (in the authors' words) ‘history divergent’ results are 

possible. 

 

Albeit enthusiastic, it is important to say that both the indirect calibration and the 

history-friendly approaches raise a set of fundamental methodological issues. However, 

it is beyond the scope of this work a detailed methodological analysis of empirical 

validation.50 

 

3.3.6. Estimation of ABMs 

 

ABMs are in general complex non-linear models, and can thus present many 

different behaviors depending on the region of the parameter space being sampled. 

Therefore, accessing the performances of the model in the right region of the parameter 

space is crucial for model evaluation. Once this task is done and the model is considered 

appropriate for its scopes, lessons may be learned about what might happen in the real 

world if some of the parameters is changed, either as a consequence of some unforeseen 

developments (scenario analysis) or due to some specific action purposefully 

implemented (policy analysis). 

The objective, broadly speaking, is the comparison of instances of the model with 

different parameters values in order to select those which better fit the data. Before the 

discussion of some estimation methods used in the agent-based approach, it is worthwhile 

to make two remarks. 

First, although many researchers argue that calibration and estimation are 

basically the same thing, others believe that calibration is something different from 

estimation. As Richiardi (2018c) argues, the differentiation boils down to a matter of 

convenience. For our purposes, it is helpful to distinguish them along the following lines: 

                                                           
50 For a detailed analysis of methodological issues regarding empirical validation of ABMs, see Windrum 

et al. (2007). See also Fagiolo and Richiardi (2018). 
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[…] calibration aims at maximizing the fitness of the model with the observed 

data in a distance metric arbitrarily chosen by de modeller, without bothering 

about the ‘true’ value of the parameters of the real world data generating 

process (rwDGP), or the uncertainty surrounding them; estimation aims at 

learning about the ‘true’ value of the parameters of the rwDGP by evaluating 

the fitness of the model with the observed data in a carefully chosen distance 

metric, such that the estimator has well known (at least asymptotically) 

properties. Roughly speaking, maximization of the fitness is a goal in 

calibration, a mean in estimation. Calibration is meant to show that the model 

is plausible – that is, it resembles the real world – and aims at reducing the 

number of possible worlds, one for each combination of the parameters, that 

have to be explored in order to understand the behavior of the system; 

estimation assumes that the model is at least approximately correct – that is, 

well specified – to make inference about the true rwDGP. (Richiardi, 2018c, 

pp. 184-185) 

 

Second, as ABMs generally involve many parameters and non-linearities, it can 

be very burdensome and empirically unmanageable to estimate them. This has so far 

deterred estimation of ABMs, and harmed the diffusion of the methodology. The good 

news is that the development of computational techniques and the increasing availability 

of computer power have made the issue less untreatable. 

In the last two sections, we presented some of the main calibration techniques 

used in ABMs. Now, we will focus on the main estimation methods available so far. 

 

3.3.6.1.  Simulation-Based Estimation 

 

Simulation-based methods have been introduced back in the 1990s, following the 

developments of computer power. According to Richiardi (2018c, pp. 184-185):  

 

The basic idea with simulation-based econometrics is to replace the evaluation 

of analytical expressions about theoretical (model) quantities with their 

numerical counterparts computed on the simulated data. The (simulated) 

theoretical quantities, which are functions of the parameters to be estimated, 

can then be compared with those computed on the real on the real (observed) 

data as in any estimation procedure. If the model is correctly specified – and 

some technical conditions hold – for large samples, the observed quantities 

tend to the theoretical quantities, at the ‘true’ values of the parameters. Because 

the simulated quantities also tend to the theoretical quantities, the observed 

quantities converge to the simulated quantities. 

 

Two families of approaches can be followed when performing simulated-based 

estimation. The first follows a frequentist approach, in which the procedure is, roughly 

speaking, to look at the values of the parameters that minimize the distance between the 
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simulated and the observed quantities. This procedure is known in general as Simulated 

Minimum Distance (SMD). In this general class, the most common techniques are: the 

method of simulated moments (MSM), indirect inference (II), and simulated maximum 

likelihood (SML). 

The task of comparing real and artificial data requires the computation of some 

statistics 𝑦, both in the real and in the artificial data, and then the aggregation into a unique 

measure of distance. These statistics are computed just once in the real data (which do 

not change) and once every iteration until convergence in the real data, which depends on 

the value of the structural parameters. The change in the value of the parameters of each 

iteration is proceeded following some optimization algorithm, with the goal of 

minimizing the distance. 

The second family of approach is the Bayesian. According to Richiardi (2018c, p. 

191): 

 

In Bayesian analysis, one starts with a prior knowledge (sometimes imprecise) 

expressed as a distribution on the parameter space and updates this knowledge 

according to the posterior distribution given the data. Classical Bayesians still 

believe in an unknown ‘true’ model, as in the frequentist approach. However, 

rather than aiming at identifying the ‘true’ values of parameters (or a 

corresponding confidence interval), they use the information contained in the 

data to update the subjective beliefs about them. On the other hand, subjective 

Bayesians do not believe in such true models and think only in terms of 

predictive distribution of a future observation. 

For frequentists (and classical Bayesians), parameters are assumed to be fixed 

(at least within a group or condition) and inference is based on the sample space 

of hypothetical outcomes that might be observed by replicating the experiment 

many times. For subjective Bayesians, on the other hand parameters are treated 

as random quantities, along with the data, and inference is based on posterior 

distributions. 

 

In the following sections, we will present the general ideas behind these 

approaches. 

 

 

3.3.6.1.1. The Method of Simulated Moments (MSM) 

 

This method proposes a solution to properly characterize both the model and the 

real data that considers the longitudinal means of the selected statistics. Rather than 

seeking consistency in sample size, consistency in time is achieved. By increasing the 
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length of the observation period, both for the real and the simulated data, the estimates 

become more precise and converge toward the true value of the parameters.  

Broadly speaking, in the MSM, different orders of moments of the time series of 

interest are used, and then weighted to take into account their uncertainty. The idea behind 

this methodology is to allow parameters estimated with a higher degree of uncertainty to 

count less in the final measure of distance between the real and the artificial data. It is 

important to note that having different weights affects the efficiency of the estimates, but 

not their consistency.  

The moment estimator is: 

 

 𝜃 = argmin
𝜃
[ 𝜇∗(𝜃) − 𝜇𝑅]′ 𝑊

−1[𝜇∗(𝜃) − 𝜇𝑅] (123) 

where 𝑊 is a positive definite matrix of weights, 𝜇∗(𝜃) is the simulated moment, and 𝜇𝑅 

is the real moment. 

 

The model analysis proceeds as follows. If the number of moments is equal to the 

number of structural parameters to be estimated, the model is just-identified. The 

minimized distance, for the estimated values of the parameters, is therefore 0 in the limit 

(as the sample size increases), supposing the model is correctly specified. If the number 

of moments is higher than the number of parameters, the model is over-identified and the 

minimized distance is always positive. If it is lower, the model is under-identified. 

 

3.3.6.1.2. Indirect Inference (II) 

 

In the II method, the basic idea is to use the coefficients of an auxiliary model, 

estimated both on the real and on the simulated data, to describe the data, that is, to use 

the coefficients as summary statistics on the original model. The model prescribes the 

following steps: 

(i) Simulate the model for a candidate parameters vector 𝜃𝑖 and obtain 

artificial data; 

(ii) Estimate the parameters 𝛽 of a (possibly misspecified) auxiliary model 

𝑦𝑡 = 𝑓(𝛽, 𝑧𝑡), where 𝑧𝑡 are the explanatory variables; 
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(iii) Change the structural parameters 𝜃 of the original model until the distance 

between the estimates of the auxiliary model using real and artificial data 

is minimized, as follows: 

 

 𝜃 = argmin
𝜃
[ 𝛽̂(𝜃) − 𝛽̂𝑅]′ 𝑊

−1[𝛽̂(𝜃) − 𝛽̂𝑅] (124) 

where 𝑊 is a positive definite matrix of weights; 𝛽̂(𝜃) is the estimated parameter of the 

auxiliary model; and 𝛽̂𝑅 is the estimated parameter of the original model. 

 

The logic is the same of the simulated moments. If the number of the parameters 

of the auxiliary model is equal to the number of parameters in the original model, the 

original model is just-identified, and the distance between the estimated coefficients on 

the real and on the simulated data (if the model is correctly specified) goes in the limit to 

zero. If the number of parameters in the auxiliary model is bigger than the number of 

parameters in the original model, the original model is over-identified, and the distance 

between the estimated coefficients remains positive. Finally, if the number of parameters 

in the auxiliary model is smaller than the number of parameters in the original model, the 

original model is under-identified. 

 

3.3.6.2.  Bayesian Estimation 

 

The fundamental equation for Bayesian methods is the Bayes theorem: 

 

 𝑝(𝜃|𝑌𝑅) ∝ ℒ(𝜃; 𝑌𝑅)𝑝(𝜃) (125) 

where  𝑝(𝜃) is the prior distribution of the parameters, ℒ(𝜃; 𝑌𝑅) ≡ 𝑝(𝑌𝑅|𝜃) is the 

likelihood of observing the data 𝑌𝑅 ≡ {𝑦𝑡
𝑅} (with 𝑡 = 1,… , 𝑇) given the value of the 

parameters, and 𝑝(𝜃|𝑌𝑅) is the posterior distribution (i. e., the updated distribution once 

the information coming from the data is properly considered). 

 

As an input to the simulation process, Bayesians use the prior distribution of the 

parameters and get back a posterior distribution. In the process, knowledge gets updated 

by the information contained in the data. The prior distribution typically comes from other 

studies or subjective evaluations. A uniform distribution in the allowed range of 
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parameters is often used as a way to introduce uninformative priors. All in all, the prior 

is a distribution, which through application of the Bayes theorem yields another 

distribution as an output. 

We can point out three differences between the Bayesian approach and the SMD 

methods. First, in the Bayesian approach, there is no maximization involved. Second, 

rather than obtaining a point estimative for the parameters, we get a distribution. Third, 

prior knowledge may be incorporated. 

Sampling the posterior distribution 𝑝(𝜃|𝑌𝑅) involves two computationally 

intensive processes. The first obtain an estimate for the likelihood ℒ, given the values of 

𝜃. The second involves the iteration over different values of 𝜃. 

The estimation of the likelihood, that is, the probability of observing the data, 

given the current values of the parameters, can be done when it is not feasible to 

analytically derivate it. The process is done when it is repeatedly sampling from the model 

output.51 

Once the likelihood is known, the application of the Bayes theorem allows the 

model to get a probability density function for the posterior distribution, at one given 

value of 𝜃. However, to recover the whole shape of the posterior distribution, many values 

need to be sampled. 

There are four main classes of efficient sampling schemes to obtain samples from 

a function of 𝜃: the rejection sampling, the importance sampling, the Markov chain Monte 

Carlo, and the sequential Monte Caro methods.52 

In the last fifteen years, a new set of methods have appeared to produce 

approximations of the posterior distributions without relying on the likelihood. These 

methods are labelled likelihood-free methods. The best-known class is the Approximate 

Bayesian Computation (ABC). In what follows, we give an overview of this method. 

 

3.3.6.2.1. Approximate Bayesian Computation (ABC) 

 

In standard Bayesian methods, the likelihood function provides the fit of the 

model with the data. However, the likelihood is often computationally impractical to 

                                                           
51 See Richiardi (2018c, pp. 211-214) for a detailed explanation. 
52 It is beyond the scope of this work to detail how they work. For an excellent survey on this subject, see 

Hartig et al. (2011). 
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evaluate. The basic idea of the ABC is to replace the evaluation of the likelihood with a 

0-1 indicator, describing whether the outcome of the model is close enough to the 

observed data. 

To perform such a task, a few procedures need to be done. First, the model 

outcome and the data must be summarized. Then, a distance between the simulated and 

the real data is computed. The model is considered close enough to the data if the distance 

falls within the admitted tolerance, 

Taking it to a properly formalism, the basic ABC works as follows: 

 

(i) A candidate vector 𝜃𝑖 is drawn from a prior distribution; 

(ii) A simulation is done with parameters vector 𝜃𝑖, obtaining simulated data 

from the model density 𝑝(𝑦|𝜃𝑖); 

(iii) The candidate vector is ether retained or dismissed depending on whether 

the distance between the summary statistics computed on the artificial data 

𝑆(𝑦(𝜃)) and the summary statistics computed on the real data 𝑆(𝑦𝑅) is 

within or outside the admitted tolerance ℎ ∶ 𝑑(𝑆, 𝑆𝑅) ≤ ℎ.  

 

This procedure is repeated 𝑁 times. The retained values of the parameters define 

an empirical approximated posterior distribution. 

As we can notice, there are three main ingredients in ABC: (i) the section of 

summary statistics; (ii) the definition of a distance measure; and (iii) the definition of a 

tolerance threshold. The most challenging choice concerns the first. The standard scheme 

to select to select summary statistics for ABC is the rejection sampling (i. e., candidates 

are drawn from the prior distribution, and only those who perform well are maintained). 

However, as Richiardi (2018c) argues, this is not very efficient, mainly if the prior 

distribution differs significantly from the posterior. 

In fact, this topic is an active area of research. In recent years, we have seen the 

development of techniques to provide guidance in the selection of the summary statistics 

(see Fearnhead and Prangle, 2012), as well as the use of ABC with more efficient 

sampling schemes (see Sisson et al., 2016). 

In summary, the main difference between ABMs estimation and more standard 

methods lies in the higher computational complexity of ABMs. Often, likelihood-based 
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methods are impractical, unless very few parameters are involved. This challenging task 

of empirical validating ABMs has been so far restricted to a few and relatively simple 

cases. Surely, this is going to change as the field of agent-based modelling becomes more 

and more mature. As a matter of fact, likelihood-free methods (e. g. ABC) seem therefore 

promising, especially when coupled with the use of efficient Monte Carlo sampling 

(Richiardi, 2018c; Sisson et al., 2016). 
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4. CONCLUSIONS 

 

The recent crisis of 2007-2008 has exposed some weaknesses in the standard 

macroeconomic modelling approach, grounded upon DSGE models. The main criticisms 

raised against these models are related to their limitations to forecast the occurrence of 

large-scale economic turmoils and therefore to provide effective policy advices. Despite 

their undoubtedly fruitful advances over earlier macroeconomic models, the DSGE 

framework fails when dealing with macroeconomics’ complexity. In this sense, ABMs 

can be a valid and flexible tool for studying macroeconomics - here understood as a 

complex social system with many dynamic and interacting components. 

This work defended the idea that a more productive research agenda for 

macroeconomic modelling should avoid any the insular behavior and benefit from a 

combination of both modelling approaches. In fact, the call for a joint contribution of 

different approaches is shared by some of the most important macroeconomists in the 

world. Lindé (2018) makes it clear: “I believe that other models can be important 

complements and sometimes even substitutes to DSGEs, depending on the question 

addressed and resources available for modelling and maintenance” (Lindé, 2018, p. 271). 

In our view, a possible way of accomplishing such a task starts with a 

systematically comparison of the two modelling frameworks in order to make them 

communicate with each other and to yield better policy analyses. But it is not a trivial 

procedure. 

Given the general theoretical formalism of both the DSGE and the ABM’s 

structure, one can notice why it is so difficult to compare and combine results between 

them. As shown, the theoretical architecture of ABMs is defined in terms of a set of 

coupled difference equations describing the evolution over time of the state variables 

characterizing each agent. Couplings come from interactions of one sort or another. In 

general, due to its high dimensionality the system cannot be solved analytically, and the 

conditions for an exact aggregation conducive to a representative agent are not respected. 

The model therefore must be simulated at the computer. In other words, the modeller asks 

a computer program to solve the system for him in a specific case, i.e. for a specific 

combination of parameter values and initial conditions. 

Therefore, before entering the simulation stage, the main modeling problem is the 

choice of parameter values and of initial conditions for state variables and populations’ 
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size and attributes. Such a choice is not independent from the empirical validation of the 

model, that is, the capability of the model to reproduce some chosen stylized facts, both 

at the micro and at the macro level. Although parameterization is frequently guided by 

little else than this, it was shown some of the most important advances on this subject. Of 

course, the selection of the empirical evidence used for comparison is crucial, as it 

amounts to defining the criteria against which the model is evaluated. Historical behavior 

itself passes through a process of analysis and simplification that leads to the 

identification of a set of stylized facts, which are generally defined in probabilistic terms. 

In the end, therefore, the model is evaluated according to the extent it is able to statistically 

replicate a set of selected stylized facts.  

At the micro level, the main goal of any validation exercise is to assess the 

capability of the model to replicate some stylized facts concerning statistical distributions 

of individual-level state variables (e. g. the right skewed distribution of firms’ size or of 

the income distribution). At the macro level, the main goal of validation is to assess 

whether the model is able to generate (by means of bottom-up simulation procedures) 

statistical aggregates which replicate some stylized facts concerning aggregate variables, 

such as GDP, aggregate unemployment or inflation. Sensible initial choices of 

parameters, guided mainly by reasonable approximations to well-known stylized facts, 

should allow the model to replicate satisfactorily those empirical regularities. Once a 

satisfying initialization choice has been defined, Monte Carlo simulations can be run to 

check for the robustness of results as the parameter space is suitably explored (Delli Gatti 

et al. 2011). 

On the other hand, DSGE models are simpler, analytically resolvable (albeit many 

times unmanageable) and may be flexible enough to be used for different purposes. The 

baseline procedure - according to which the aggregate consumer expenditure is modeled 

as the solution to the Euler equation (which is a condition for intertemporal optimality) 

of a representative household, under the hypothesis of rational expectations – has logical 

coherence and can be proved mathematically, although the assumptions used are 

sometimes too far from the reality.  

It is easy to notice the alleged differences in terms of mathematical robustness 

between analytical models (DSGE models) and computer-simulated models (ABMs). In 

analytical models, the behavioral rules typically have a simple structure, with either 

limited or global interaction, and heterogeneity is kept to a minimum. Functional forms 
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are often linear (or log-linearized). Aggregation is performed on selected variables by 

taking expectations over the stochastic terms, which are conveniently specified.  

DSGE models may exaggerate individual rationality and foresight, and understate 

the importance of heterogeneity, that is, differences between agents focusing mostly on 

the way economic agents interact through aggregate prices. The AB models offer a more 

flexible approach to the role of other social interactions between individual agents in the 

economy by defining the characteristics and behavior of individual heterogeneous agents 

with limited rationality, information and foresight. On the other hand, AB models may 

exaggerate errors in individual decision-making, since they usually model only simple 

strategies that are far from optimal choices and that evolve in time. 

In ABMs, little restrictions are made on the specification of the behavioral rules, 

but this freedom comes at a price. The problem is that agents can depart from rationality 

in an infinite number of ways leading into what some economists refer to as a wilderness. 

Moreover, the equation for the macro dynamics (see equation 118) can easily grow 

enormous, hindering any attempt at symbolic manipulation. Another issue must be 

highlighted. It refers to the connection between inputs and outputs done by the IOT 

function. As Richiardi (2018b, p. 42) say: 

 

[…] the connection between inputs and outputs is the IOT function, the black 

box through which only inductive evidence based on simulated data can be 

obtained. The proof of the results thus lies in the code, rather than in 

mathematical reasoning as in analytical models. This is why it is fundamental, 

in ABMs, to write the simulation code in a clear and transparent way, 

document it and make it public. Also, supporting evidence for the working of 

the ‘black box’, the shape of the inferred IOT function should be provided, 

either in terms of analytical results for simple cases or in terms of intuition 

explaining why the simulated results are obtained. 

 

In summary, despite the differences and weaknesses of both the ABMs and the 

DSGE models, this work embraced the idea that exploiting diversity in macroeconomic 

modelling by combining DSGE and ABMs may improve our ability to deal with 

complexity in economics and yield a more diversified and productive approach for the 

field. In our view, the first step into this direction was given. Of course, it opens a wide 

window of opportunity for new researches, such as a proper methodology to compare and 

combine ABMs and DSGE models. If the resulting approach will tend more to DSGE or 

to ABMs only time will say. More important than this is that exploiting diversity in 

macroeconomic modelling may be beneficial when making sense of the economy and 
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when setting policies to shape the economy. By doing so, macroeconomic policy 

recommendations may avoid the dangerous issue of being prisoner of a single outlook. 

Should this work contribute a few steps along this promising journey, our mission would 

be accomplished. 
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